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Abstract

In fault-tolerant distributed computing, two fundamental tasks are collective coin flip-
ping—where processors agree on a common random bit—and leader election—where they des-
ignate a leader among themselves. We study these problems in the full-information model,
where processors communicate via a single broadcast channel, have access to private random-
ness, and face a computationally unbounded adversary that controls some of the processors.
Despite decades of study, key gaps remain in our understanding of the trade-offs between round
complexity, communication per player in each round, and adversarial resilience.

We make progress by proving new lower bounds for coin flipping protocols, which also imply
lower bounds for leader election protocols. Specifically, we show that any k-round coin flipping
protocol, where each of ℓ players sends 1 bit per round, can be biased by O(ℓ/ log(k)(ℓ)) bad
players. For all k > 1 this strengthens the previous best lower bounds [RSZ, SICOMP 2002],

which ruled out protocols resilient to adversaries controlling O(ℓ/ log(2k−1)(ℓ)) players. As a
consequence, we establish that any protocol tolerating a linear fraction of corrupt players, while
restricting player messages to 1 bit per round, must run for at least log∗ ℓ − O(1) rounds,
improving on the prior best lower bound of 1

2 log
∗ ℓ− log∗ log∗ ℓ. This lower bound also matches

the number of rounds, log∗ ℓ, taken by the current best coin flipping protocols from [RZ, JCSS
2001], [F, FOCS 1999] that can handle a linear sized coalition of bad players, given the additional
freedom that players can send unlimited bits per round. We also extend our techniques to derive
lower bounds for protocols allowing multi-bit messages per round. Our results show that the
protocols from [RZ, JCSS 2001], [F, FOCS 1999] that handle a linear number of corrupt players
are almost optimal in terms of round complexity and communication per player in a round.

A key technical ingredient in proving our lower bounds is a new result regarding biasing most
functions from a family of functions using a common set of bad players and a small specialized
set of bad players specific to each function that is biased.

Complementing our lower bound results, we give improved constant-round coin flipping
protocols in the setting that each player can send 1 bit per round. For example, in the case of
two rounds, our protocol can handle O(ℓ/(log ℓ)(log log ℓ)2) sized coalition of bad players; this is
better than the best one-round protocol (also called a resilient function) by [AL, Combinatorica
1993] in this setting, which can only handle O(ℓ/(log ℓ)2) sized coalition of bad players.
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1 Introduction

Two related and fundamental tasks in fault tolerant distributed computing are for processors to
(1) collectively flip a coin, i.e. agree on a common random bit, and to (2) select a ‘leader’ among
them, in the presence of adversarial faults. These tasks have been widely studied under various
assumptions about the communication channels between the processors, the kind of faults allowed,
the power of the adversary, and the kinds of randomness each processor has access to. We study
this problem under the assumption that there is only a single common broadcast channel, that
adversarial processors are computationally unbounded, and that each processor has access to private
randomness. This widely studied model was introduced by Ben-Or and Linial [BL85], and is known
as the full information model since all processors have access to the same information.

The standard way of modeling how processors coordinate their efforts is through the notion of
a protocol. All players (processors henceforth will be called players) agree on a fixed protocol π
beforehand and execute it, at the end of which they all agree on a common random bit or a leader.
We assume that there is an adversary A that selects a subset of players before the protocol begins
and continues controlling them throughout the execution of the protocol. We refer to the coalition
of controlled players as ‘bad’ and the remaining players as ‘good’. A protocol consists of one or
more rounds. In each round, all players should flip r private random coins and broadcast those r
bits to everyone else. The identity of the sender of the bits is always known. This continues for
k rounds, after which the protocol determines the common random bit or selects the leader. We
assume that each round of the protocol is asynchronous, and we always consider the worst-case
scenario in which all good players broadcast their bits at the beginning of the round. Then, based
on their outputs, the adversary A determines the r bits output by each of the bad players. As
a result, the outputs of the bad players are coordinated and depend on the outputs of the good
players and the outputs of previous rounds. We note that the players are synchronized in between
rounds, i.e., a round ends only when all outputs of all players are received. For formal definitions
of these protocols, we refer the reader to Section 3.3.1.

Since bad players in this model are computationally unbounded, cryptography-based proto-
cols, which are standard for the Byzantine generals problem and other related models where the
adversary is (say) polynomially bounded, are not useful in our setting. Nevertheless, remarkable
protocols do exist in this model that can guarantee that a good leader is always chosen with non-
trivial probability, or that the outcome of the coin flip is not too biased towards any particular
result.

1.1 Related Work

We first survey the best protocol constructions that are currently known. We mention that given
a leader election protocol, one can turn it into a collective coin flipping protocol at the expense of
one extra round by making the elected leader flip a coin and output the result (see Claim 3.10 for a
proof). Hence, most constructions have focused on leader election protocols. In all these protocols,
the goal is to minimize the number of rounds, minimize the number of random bits each player can
send per round, and maximize the number of bad players the protocol can handle while electing a
good leader with non-trivial probability / flipping a coin where each output in {0, 1} has at least
constant probability of appearing.

Starting with Ajtai and Linial’s non-explicit function [AL93], later made explicit by [CZ19,
Mek17, IMV23, IV24], one can construct a one-round collective coin flipping protocol, where
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each player sends 1 random bit and the output remains close to uniform even in the presence
of O(ℓ/(log ℓ)2) bad players. Leader election protocols that can guarantee a constant probability of
electing a good leader in the presence of O(ℓ) bad players have been widely studied: when the num-
ber of random bits per round is restricted to be 1, a long line of works [BL85, Sak89, AN93, CL95,
ORV94, Zuc97, Fei99, Ant06] constructed various explicit protocols that run in O(log ℓ) rounds.
Moreover, when the number of random bits per round is unrestricted, [RZ01, Fei99] constructed
explicit leader election protocols that run in log∗(ℓ) +O(1) rounds.1

On the negative side, very few results are known regarding the non-existence of protocols with
various parameters. Before stating the known results, we observe that since leader election protocols
imply coin flipping protocols, lower bounds for coin flipping protocols imply lower bounds for leader
election protocols with one less round (see Corollary 3.11 for formal claim). Hence, all efforts to
date have focused on providing lower bounds for coin flipping protocols. First, it is well known that
no protocol can handle ℓ/2 or more bad players [Sak89], regardless of the number of rounds and the
number of random bits allowed per round. For 1 round coin flipping protocols where players send 1
bit per round, [KKL88] showed every protocol can be biased towards some outcome by some set of
O(ℓ/ log ℓ) bad players, almost matching the construction of [AL93]. For multiple rounds, [RSZ02]
showed that any k-round coin flipping protocol where each player sends 1 bit per round can be
biased towards some outcome by O(ℓ/ log(2k−1) ℓ) bad players.2 This also implies that in order to
handle Θ(ℓ) bad players when the number of bits per round is 1, the number of rounds required is

1
2 log

∗(ℓ)− log∗ log∗ ℓ. For coin flipping protocols where players can send
(
log(2i−1) ℓ

)1−o(1)
random

bits in round i, [RSZ02] showed that there always exists a set of o(ℓ) bad players that can bias
them towards some outcome.

The work of Filmus et al. [FHHHZ19] gave lower bounds on collective coin flipping protocols
under arbitrary product distributions, rather than the uniform distribution, on the Boolean cube.
For further details, we refer the reader to the excellent survey of Dodis [Dod06] on protocols and
lower bounds in the full information model.

1.2 Our Results

Our main results are various improved lower bounds for coin flipping protocols. As noted above,
since a leader election protocol can be turned into a coin flipping protocol (with one extra round),
our lower bounds for coin flipping protocols immediately imply lower bounds for leader election
protocols as well.

Our lower bounds improve and subsume all previous multi-round lower bounds (established by
[RSZ02]). As discussed below, in some sense our lower bounds show that the protocols of [RSZ02]
and [Fei99] are optimal.

Theorem 1 (Informal version of Theorem 5.1). For any k-round coin flipping protocol π over ℓ
players where players send 1 bit per round, there exists a set of bad players B ⊂ [ℓ] and an outcome

o ∈ {0, 1}, with |B| ≤ O
(

ℓ
log(k)(ℓ)

)
, such that the players in B can bias π to output o with probability

0.99.

1Recall that log∗(ℓ) is the minimum number of logs that need to be applied to ℓ until it attains value at most 1.

2We use the notation log(i) ℓ to denote i-times-iterated logarithm, i.e.

i times︷ ︸︸ ︷
log · · · log ℓ.
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This directly improves upon the previous best lower bounds, due to [RSZ02], which showed that

O
(

ℓ
log(2k−1)(ℓ)

)
players can corrupt such protocols, achieving a strictly better bound for all k > 1.

We also obtain a lower bound on the number of rounds required for protocols that can handle
a linear number of bad players:

Corollary 1 (Informal version of Corollary 5.2). For any k-round coin flipping protocol π over ℓ
players where players send 1 bit per round and where k ≤ log∗ ℓ − O(1), there exists a set of bad
players B ⊂ [ℓ] with |B| ≤ 0.01ℓ and an outcome o ∈ {0, 1} such that the players in B can bias π
to output o with probability ≥ 0.99.

This result shows that any coin flipping protocol, where players send 1 bit per round, that can
handle linear sized coalitions requires log∗ ℓ−O(1) rounds. This improves upon the best previous
lower bound of 1

2 log
∗ ℓ − log∗ log∗ ℓ rounds, due to [RSZ02] . This lower bound also essentially

matches the number of rounds, log∗ ℓ, used by the current best coin flipping protocols from [RZ01,
Fei99] that can handle linear sized coalition of bad players, given the additional freedom that players
can send unlimited bits per round.

We remark that a key ingredient towards proving Theorem 1 is a new lemma regarding biasing
most functions from a family of functions using a common set of bad players and a small special-
ized set of bad players specific to each function being biased. For a formal statement, refer to
Theorem 4.1

We also obtain lower bounds against protocols where players can send multiple bits per round:

Theorem 2 (Informal version of Theorem 5.5). Let π be a k-round coin flipping protocol over ℓ
players where each player can send (log(i) ℓ)0.99 many bits in round i, and k ≤ log∗ ℓ−O(1). Then,
there exists a set of bad players B ⊂ [ℓ] and an outcome o ∈ {0, 1}, with |B| ≤ 0.01ℓ, such that the
players in B can bias π to output o with probability ≥ 0.99.

The coin flipping protocols from [RZ01, Fei99] that can handle a linear sized coalition of bad
players take log∗ ℓ+O(1) rounds, and in round i, only require that all players send O(log(i) ℓ) many
bits. Hence, Theorem 2 shows that the protocols from [RZ01, Fei99] are essentially optimal, in the
sense that if the number of rounds and the number of bits each player can send in round i are even
slightly lowered, then no protocol can handle a linear sized coalition of bad players. This result
also directly improves on a bound in this setting obtained by [RSZ02]; their result showed that if
each player can send at most (log(2i−1) ℓ)0.99 bits in round i, then any such protocol cannot handle
a linear sized coalition of bad players. This resolves an open problem raised in [RSZ02], where they
exactly asked for a result along the lines of Theorem 2.

We also complement the lower bound result described above, by constructing improved constant-
round protocols in which each player can send one bit per round. Our goal is to maximize the
number of bad players the protocol can tolerate while still ensuring that the output coin flip
remains nearly balanced. We provide constructions of such protocols.

Theorem 3 (Informal version of Theorem 6.1). For any k ≥ 2, there exists an explicit k-round
coin flipping protocol over ℓ players where each player sends 1 bit per round such that when the

number of bad players is at most O
(

ℓ
(log ℓ)(log(k) ℓ)2

)
, the output bit is 0.01-close to uniform.

When k = 2, this protocol can handle any O
(

ℓ
(log ℓ)(log log ℓ)2

)
-sized coalition of bad players,

which is better than the best 1 round protocol by [AL93] in this setting which can only handle an

3



O(ℓ/(log ℓ)2)-sized coalition of bad players. To compare with our lower bound, when k = 2 our
lower bound from Theorem 1 shows any such protocol can be biased by a O(ℓ/(log log ℓ)) sized
coalition of bad players. It is a very interesting open problem to settle the exact number of bad
players that the best two-round coin flipping protocol can handle.

2 Proof Overview

We give a brief overview of our strategy for our new lower bound and upper bounds for k-round coin
flipping protocols. In Section 2.1, we sketch our proof of lower bounds for coin flipping protocols. In
Section 2.2, we prove lower bounds against protocols where players can send many bits per round.
In Section 2.3, we prove a useful helper theorem that shows how any family of functions can be
biased by a random set of variables and a small set of variables, specific to each function. Finally,
in Section 2.5, we construct new improved constant-round coin flipping protocols.

2.1 Biasing Coin Flipping Protocols

We focus on the two-round setting which contains most of the core ideas behind our proof and
allows us to simplify our analysis. For any two-round coin flipping protocol π : ({0, 1}ℓ)2 → {0, 1}
we show:

Theorem 2.1 (Two-round version of Theorem 5.1). For any 2-round coin flipping protocol π over

ℓ players where Pr[π = 1] ≥ 0.01, there exists a set of bad players B ⊆ [ℓ] with |B| = O
(

ℓ
log log ℓ

)
so that Pr[π|B = 1] ≥ 0.99.

The main tool that we will use to prove this theorem is that for any family F of functions from
{0, 1}ℓ → {0, 1}, there exists some common set of bad players BR ⊂ [ℓ] such that for almost every
function f ∈ F , there exist a small set of “heavy” bad players BH , depending on f, such that
BR ∪BH can bias f . Formally:

Theorem 2.2 (Simplified version of Theorem 4.1). Let F be any family of functions from {0, 1}ℓ →
{0, 1} where Pr[f = 1] ≥ 0.001 for each f ∈ F . Then, there exists a common bad set BR ⊆ [ℓ] with

|BR| = O
(

ℓ
log log ℓ

)
such that for 0.999 fraction of functions f ∈ F , there exists a heavy bad set

BH = BH(f) ⊆ [ℓ] with |BH | = (log ℓ)0.001 such that BR ∪BH can 0.999-bias f towards 1.

We will also require a simpler version of the above theorem that follows by inductively applying
the KKL theorem [KKL88]:

Theorem 2.3 (KKL). Let f : {0, 1}ℓ → {0, 1} be such that Pr[f = 1] ≥ 0.001. Then, there exists

a set of bad players B with |B| ≤ O
(

ℓ
log ℓ

)
such that Pr[f |B = 1] ≥ 0.999.

We will sketch a proof of Theorem 2.2 in Section 2.3. Let us see how Theorem 2.1 follows from
Theorem 2.2:

Proof Sketch for Theorem 2.1. In our proof we will separately find sets of bad players to corrupt
in the first round and the second round, and at the end we will take the union of the two sets. In
particular, we let BI (initially empty) be the set of bad players that we will corrupt from the first
round.
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For α ∈ {0, 1}ℓ, let πα : {0, 1}ℓ → {0, 1} be the induced second round protocol when the players
output α in the first round. Since Pr[π = 1] ≥ 0.01, by a reverse Markov argument (see Claim 3.3),
we have that Pr[πα = 1] ≥ 0.001 for at least 0.009 fraction of α. Let F be the family of functions
consisting of these functions πα. We apply Theorem 2.2 to find a common set of bad players BR

such that for 99% of πα ∈ F , there exists a set of bad players g(α) such that BR ∪ g(α) can

0.999-bias πα towards 1. Moreover, |BR| ≤ O
(

ℓ
log log ℓ

)
and |g(α)| = h = (log ℓ)0.001.

For each α for which there does not exist such a set of bad players that along with BR can
corrupt πα, we let g(α) = ⊥. Then, we know that Pr[g ̸= ⊥] ≥ 0.008. We use Theorem 2.3 to

find a set of bad players B
(1)
temp with

∣∣∣B(1)
temp

∣∣∣ ≤ O
(

ℓ
log ℓ

)
to bias the first round protocol so that

Pr[g|
B

(1)
temp
̸= ⊥] ≥ 0.999. We add all players from B

(1)
temp to BI .

We view g = (g1, . . . , gh) where each gi : {0, 1}ℓ → [ℓ] ∪ ⊥ where gi outputs the i-th largest
element from g(α) and gi(α) = ⊥ if and only if g(α) = ⊥. We will repeatedly use Theorem 2.3 to
find bad players that can bias each of g1, . . . , gh so that over most inputs, each of their images lies
in some set of size c = ℓ

(log ℓ)1000
. Towards this goal, we maintain sets C1, . . . , Ch that will satisfy

the following invariant (initially each of these sets equals [ℓ]):

(∗) For every α, if there exists i ∈ [h] such that gi(α) ̸∈ Ci, then g(α) = ⊥. (Equiva-
lently, if g(α) ̸= ⊥, then gi(α) ∈ Ci for all i ∈ [h].)

We now find bad players to bias each of these gi and while doing so, maintain that at the beginning
of each iteration of the loop, Pr[g|BI

̸= ⊥] ≥ 0.999. Formally, we proceed as follows:

• While there exists i ∈ [h] such that |Ci| > c
(
Recall that c = ℓ

(log ℓ)1000
, h = (log ℓ)0.001

)
:

1. Let Xi be a random subset of Ci with |Xi| = |Ci| /2. Since Pr[gi|BI
̸= ⊥] ≥ 0.999, by

our invariant property, Pr[gi|BI
∈ Ci] ≥ 0.999. Hence, E[Pr[gi|BI

∈ Xi]] ≥ 0.49. In
particular, there exists C ′

i ⊂ Ci with |C ′
i| = |C ′

i| /2 such that Pr[gi|BI
∈ C ′

i] ≥ 0.49. We
set Ci to equal C ′

i.

2. To maintain our invariant, we can now only guarantee that Pr[g|BI
̸= ⊥] ≥ 0.49. To

increase this, we apply Theorem 2.3 to the function g|BI
to find a set of bad players

B
(2)
temp with

∣∣∣B(2)
temp

∣∣∣ ≤ O
(

ℓ
log ℓ

)
so that Pr[g|

BI∪B
(2)
temp
̸= ⊥] ≥ 0.999. We add all players

from B
(2)
temp to BI .

Finally, we let BH =
⋃h

i=1Ci. Our final set of bad players will be BR ∪ BH ∪ BI . We
see that Pr[g|BI

̸= ⊥] ≥ 0.999. Whenever g|BI
(α) ̸= ⊥, Pr[πα|BR∪BH

= 1] ≥ 0.999. Hence,
Pr[πBR∪BH∪BI

= 1] ≥ 0.999 · 0.999 ≥ 0.99 as desired.

We finally bound the number of bad players we control. We know that |BR| ≤ O
(

ℓ
log log ℓ

)
. We

also have that |BH | ≤ c · h = ℓ
(log ℓ)1000

· (log ℓ)0.001 < ℓ
(log ℓ)999

. Since we decrease the size of each

Ci by a factor of 2 each time we execute the loop, and we stop once every i ∈ [h] has |Ci| ≤ c,
the total number of iterations of the loop is h · log(ℓ/c) = (log ℓ)0.001 · (1000 log log ℓ) ≤ (log ℓ)0.002.

Since each time through the loop we add O
(

ℓ
log ℓ

)
players to BI , we bound the size of BI as

|BI | ≤ O
(

ℓ
log ℓ + (log ℓ)0.002 · ℓ

log ℓ

)
≤ ℓ

(log ℓ)0.99
. Hence, the total number of bad players we control

is |BR|+ |BH |+ |BI | ≤ O
(

ℓ
log log ℓ

)
.
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We briefly mention that the above ideas more or less work to extend our two-round lower
bound to k rounds; the main difference is that we inductively use our bounds to bias (k− 1)-round
protocols in place of the second use case of the KKL theorem above (see Item 2(a)iii in the “Formal
description of algorithm” in Section 5).

2.2 Biasing Coin Flipping Protocols with Longer Messages

We now briefly sketch a proof for lower bounds for protocols where players can send more than one
bit per round:

Theorem 2.4 (Simplified version of Theorem 5.5). Let π be a k-round coin flipping protocol over
ℓ players where in round i, each player can send ri = (log(i) ℓ)0.99 many bits. Then, there exists a
set of bad players B ⊂ [ℓ] with |B| ≤ 0.01ℓ so that Pr[π|B = 1] ≥ 0.99.

Proof sketch. We essentially follow the same proof strategy as in the k-round version of Theorem 2.1.
To do this, we treat each round i of the protocol as being over ri · ℓ bits and whenever our lower
bound asks us to corrupt a bit, we corrupt the corresponding player that controls that bit. For
instance, in the one-round version of this theorem, we treat the input as being over ℓ ·r1 bits. Then,
we use our lower bounds to find a set of ℓ·r1

log(ℓ·r1) bits such that if bad players control them, then
they can bias the protocol. So, we let B be the set of all players that control each such bit. It must
be the case that |B| ≤ ℓ·r1

log(ℓ·r1) . Since |r1| ≤ (log ℓ)0.99, we end up controlling o(ℓ) players overall to
corrupt π. This idea, with the right setting of parameters, generalizes to k-round protocols.

2.3 Biasing a Family of Functions

We now sketch a proof of Theorem 2.2. Towards proving it, we will require the following lemma
which is about biasing individual boolean functions:

Lemma 2.5 (Simplified version of Lemma 4.2). Fix 1 ≤ h ≤ ℓ0.99 and let f : {0, 1}ℓ → {0, 1} be

such that Pr[f = 1] ≥ 0.01. Then, for 0.99 fraction of BR ⊂ [ℓ] with |BR| = O
(

ℓ
log(h)

)
, there exists

BH = BH(BR) ⊂ [ℓ] with |BH | ≤ h such that BR ∪BH can 0.99-bias f towards 1.

We prove this lemma later. Now we show how, using Lemma 2.5, we can prove Theorem 2.2.

Proof sketch of Theorem 2.2. We set h = (log ℓ)0.001. Let G = (U, V ) be a bipartite graph where
the left part U equals F , and the elements of the right part V are all size- ℓ

log(h) subsets of [ℓ]. We

add an edge between f ∈ U and a set R ∈ V if there exists H ⊂ [ℓ] with |H| ≤ h such that R ∪H
can 0.99-bias f towards 1. By Lemma 2.5, the degree of each f ∈ U is at least 0.99 · |V |. Therefore,
there exists BR ∈ V such that BR has degree at least 0.99 · |U |. Such a BR satisfies the conditions
of the theorem.

We now focus on proving Lemma 2.5. Towards proving this, we will need the following result
regarding influence of boolean functions that was proven in [RSZ02] by slightly building up on the
result of [KKL88]:

Lemma 2.6 (Simplified version of Lemma 4.4). Fix 1 ≤ h ≤ ℓ0.99. Let f : {0, 1}ℓ → {0, 1} be such

that 0.01 ≤ Pr[f = 1] ≤ 0.99. If If (i) ≤ 1
h for all i ∈ [ℓ], then

∑ℓ
i=1 If (i) ≥

log(h)
2000 .
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We use Lemma 2.6 to establish Lemma 2.5 by analyzing a semi-random process that was first
studied in [RSZ02]. Our analysis closely follows that of [RSZ02], and only differs in the final
conclusion.

Proof sketch of Lemma 2.5. Let r = Cℓ
log(h) where C is a very large universal constant. Consider

the following semi-random process:

1. Initialize BR = BH = ∅. Repeat the following for r steps or until Pr[f |BR∪BH
= 1] ≥ 0.99:

(a) (Heavy Case) If there exists i ∈ [ℓ] \ (BR ∪BH) such that the influence of i on f |BR∪BH

is at least 2
h , then add i to BH .

(b) (Random Case) Otherwise, pick a random i ∈ [ℓ] \ (BR ∪BH) and add i to BR.

We say that the above process succeeds if at the end, Pr[f |BR∪BH
= 1] ≥ 0.99. We will establish

the following:

Claim 2.7 (Simplified version of Claim 4.5). The above process succeeds with probability at least
0.999.

We will prove this claim later. For now we show how Lemma 2.5 follows from it. First, we
observe that |BH | ≤ h (since each player added to BH ‘pushes’ f towards 1 by a factor of 1/h, this
can happen at most h times). Next, consider a random set R ⊂ [ℓ] with |R| = ℓ and a random
permutation π of [r] so that (R,π) fixes an ordering of the elements of R. Consider the modified
semi-random process where an initially randomly choice of (R,π) is made, and then in the random
case of the process, the earliest element from R that is not in BR∪BH is chosen. At the end of the
process, BR ⊂ R and if the process succeeds, BH ∪R can indeed bias f as desired. By Claim 2.7,
the process succeeds with probability at least 0.999 and so for 0.999 fraction of choices of (R, π), the
modified process succeeds. So, there exists π∗ such that for 0.999 fraction of (R, π∗), the modified
random process succeeds. Thus, for 0.999 fraction of sets R, there exists a set BH = BH(R) (given
by the process) such that R ∪BH can 0.99 bias f as desired.

We finally prove our claim that the process indeed succeeds with high probability:

Proof sketch of Claim 2.7. For j ∈ [r], let vj represent the variable chosen at step j of the semi-
random process. LetXj equal the influence of vj on f |{v1,...,vj−1} if the process hasn’t stopped before
step j and let Xj equal 1 otherwise. Let j ∈ [r] be a step such that Pr[f |{v1,...,vj−1} = 1] ≤ 0.99.

Then, by Lemma 2.6, in step j, either there exists a variable with influence 2
h or else a random

variable will have expected influence ≥ log(h)
2000ℓ . Since 1

h ≥
log(h)
2000ℓ (recall that we assumed h ≤ ℓ0.99),

we always have that E[Xj |X1, . . . ,Xj−1] ≥ log(h)
2000ℓ .

For j ∈ [r], let Zj =
∑

k≤j Xk. Then, Z1, . . . ,Zr forms a submartingale with

E[Zr|Z1, . . . ,Zr−1] = r · log(h)
2000ℓ

= C/2000 ≥ 106.

We then apply Azuma’s inequality (see Lemma 4.3) to infer that Zr ≥ 2 with probability at least
0.999. Since Zr represents the sum total of ‘contributions’ of influences of variables towards 1,
whenever Zr ≥ 2 it must be that f has been ‘pushed’ towards 1 by a ‘total amount’ of 1. In
all such cases, Pr[f |BR∪BH

= 1] ≥ 0.999 and the process must succeed. Since this happens with
probability at least 0.999, the process succeeds with at least this probability.

This concludes the proof sketch of Lemma 2.5.
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2.4 Comparison to Proof Strategy of [RSZ02]

Since our results are inspired by the work of [RSZ02] and our proofs build on their arguments, we
here briefly sketch their strategy for 2 rounds and how we improve upon it.

Let F = {πα} where α ∈ {0, 1}ℓ and let πα be the induced second round protocol when in the
first round the players output α. [RSZ02] proceeds by finding a set of bad players in the second
round to bias the functions in F . To do this, as hinted at earlier, [RSZ02] analyzes the same semi-
random process as in Lemma 2.5. At the end of the process, they also obtain a common random
set BR and a specialized heavy set BH = BH(f) such that for most functions f ∈ F , BR ∪BH(f)
can bias the function f . They then pick another random set BR′ and bound the probability that

BH(f) ⊂ BR′ for fixed f , and argue that in expectation, δ ≈
(
r
ℓ

)2ℓ/r
fraction of functions f ∈ F

will be such that BH(f) ⊂ BR′ where |BR′ | = r. They let BR ∪BR′ be the set of bad players that
will bias the second round protocols.

Now, let S ⊂ {0, 1}ℓ be the set of α ∈ {0, 1}ℓ such that πα can be biased by BR ∪BR′ , and let
g : {0, 1}ℓ → {0, 1} be such that g(α) = 1 ⇐⇒ α ∈ S. We know from above that Pr[g = 1] ≥ δ.
Now, the goal for the first round is to find bad players to bias g towards 1 so that with high
probability, the resulting second round protocol can be biased using BR ∪BR′ . To do this, [RSZ02]
use the KKL theorem [KKL88] which lets them do this by finding O(ℓ/(δ log ℓ)) bad players. To
minimize the total number of bad players, they end up using O(ℓ/ log(3) ℓ) bad players. For multiple

rounds, their result follows by an inductive argument, showing that O
(
ℓ/ log(2k−1) ℓ

)
bad players

suffice to bias k round protocols.
Our key insight is that instead of first committing to the set BR′ that covers a small non-trivial

fraction of F and then biasing the first round to ensure that BR∪BR′ can bias most of the resulting
second round protocols, we can delay committing and instead commit incrementally. We do this
by initially setting BR′ = [ℓ], so that it can bias most of F ; we then “chisel away” half of BR′ ,
so that we can only bias half of the functions from F . To fix this, we use the KKL theorem so
that out of the set of πα functions that are being considered, we again can bias most of them. We
repeatedly do this until BR′ becomes very small, while always maintaining that we can bias most
of the resultant second round protocols. Doing this gives us an exponential improvement, with

O
(
ℓ/ log(2) ℓ

)
bad players sufficing to bias two-round protocols.

To illustrate in a simple setting why delaying committing can give an exponential improvement,
we consider the following scenario: Suppose that we are given a function f : {0, 1}ℓ → {0, 1}t and
our goal is to bias f so that it outputs some single element y from {0, 1}t with high probability.
One way to do this is to fix an element y ∈ {0, 1}t that appears with probability at least 1

2t ,
then use the KKL theorem to obtain a set of bad players that can bias f to ensure that y is
output with probability 0.99. While this works, the upper bound on the size of the set of bad

players resulting from this approach is O
(
2t · ℓ

log ℓ

)
(see Theorem 5.3). In contrast, a “delayed

commitment” approach is to maintain a set S (initially setting S = {0, 1}t); cut S in half; use KKL

to find O
(

ℓ
log ℓ

)
bad players that will ensure that at least 0.99 fraction of the inputs lie in S; and

repeat. We do this cutting process t times, so that at the end of it |S| = 1, and we let its sole
element be the final output string y. With this approach, the number of bad players required used

will be only O
(
t · ℓ

log ℓ

)
, which is an exponential improvement over O

(
2t · ℓ

log ℓ

)
in terms of the

dependence on t.
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2.5 Constructing Coin Flipping Protocols

We now move on to sketching the main ideas involved in constructing better coin-flipping protocols
in the setting that each player sends one bit per round. For simplicity, we focus on the setting of
two-round protocols, which will give a sense of how our general construction (for k rounds) works.

Theorem 2.8 (Two-round version of Theorem 6.1). For any γ > 0 there exists an explicit two-
round coin flipping protocol over ℓ players such that when the number of bad players is at most

γℓ
(log ℓ)(log log ℓ)2

, the output coin flip is ε-close to uniform where ε = O
(
γ + (log ℓ)−0.2

)
.

To help construct such protocols, we use the explicit resilient functions of [IV24]:

Theorem 2.9 (Explicit resilient function from [IV24]). There exists an explicit 1 round protocol
f : {0, 1}n → {0, 1} such that when b out of the n players are bad, the resultant output bit is

O
(
b(logn)2

n + n−0.99
)
close to uniform.

Using this, our two-round protocol proceeds as follows:

Proof sketch of Theorem 2.8. We partition the ℓ players arbitrarily into parts P1, . . . , Pℓ/ log ℓ where
|Pi| = log ℓ. Players in the same part will act as a single entity that can make log ℓ many coin flips.
We say entity Pi is good if all players that are part of the entity are good. We say the entity is
bad otherwise. Since at most γℓ

(log ℓ)(log log ℓ)2
players are bad, the number of bad entities is at most

γℓ
(log ℓ)(log log ℓ)2

.

We now deploy the lightest bin protocol of [Fei99] on the entities in the first round. In particular,
we introduce ‘bins’ B1, . . . , Bℓ/(log ℓ)3 . We ask each entity to ‘vote’ for a bin by outputting a random
number between 1 and ℓ/(log ℓ)3 (this can be done since each entity has access to log ℓ random
bits). Let i∗ ∈ [ℓ/(log ℓ)3] be such that among all the bins, bin Bi∗ “is the lightest” (has the smallest
number of entities voting for it). Let S ⊂ [ℓ/ log ℓ] be the set of entities that voted for Bi∗ .

In the second round, we apply the explicit resilient function from Theorem 2.9 to the entities
in S (asking them to output 1 bit) and let that be the output of the protocol.

We now analyze this protocol. First, since there are ℓ/(log ℓ)3 bins and ℓ/ log ℓ entities, the
lightest bin Bi∗ will have at most (log ℓ)2 players voting for it, i.e., |S| ≤ (log ℓ)2. Next, since the
number of good entities is at least ℓ

log ℓ −
γℓ

(log ℓ)(log log ℓ)2
, by a Chernoff bound (see Claim 3.4) and

a union bound, with high probability, every bin will have roughly
ℓ

log ℓ
− γℓ

(log ℓ)(log log ℓ)2

ℓ
(log ℓ)3

= (log ℓ)2 −
γ(log ℓ)2

(log log ℓ)2
good entities. Equivalently, the number of bad entities in bin Bi∗ is at most γ(log ℓ)2

(log log ℓ)2
(out

of roughly (log ℓ)2 entities in it). Hence, when we apply Theorem 2.9 with n ≈ (log ℓ)2 players, the
output coin flip will be O(γ) close to the uniform distribution (the extra (log ℓ)−0.2 error term is
because of the error in the Chernoff bound).

Organization We introduce necessary preliminaries in Section 3. In Section 4, we prove our
main technical result on jointly biasing most functions in any family of functions. We prove our
main lower bound result on the resilience of coin flipping protocols in Section 5. In Section 6,
we present new coin flipping protocols. We conclude with some discussion and open problems in
Section 7.
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3 Preliminaries

3.1 Notation and Terminology

For 0 < ε < 1/2 and o ∈ {0, 1}, we say that S ⊂ [ℓ] can (1− ε)-bias a function f : {0, 1}ℓ → {0, 1}
towards o if there exists an adversary Ao : {0, 1}ℓ−|S| → {0, 1}|S| such that the function go(y) :=
f(Ao(y), y) has Pry[go(y) = o] ≥ 1 − ε. We will similarly use the notion that a set S ⊆ [ℓ] can
(1− ε)-bias a protocol π towards o.

For a function f : {0, 1}ℓ → {0, 1}, S ⊂ [ℓ], and A : {0, 1}ℓ−|S| → {0, 1}|S|, we define f |S :
{0, 1}ℓ−|S| → {0, 1} to be f |S(x) = f(A(x), x). Often when we do this, A will be implicitly defined
by some other claim, and hence the notation reflects this by only mentioning f and S but not
A. We similarly extend this notation to protocols so that for S ⊂ [ℓ], a protocol π, and some
adversarial function A, the protocol πS is well defined.

For a function f : {0, 1}ℓ → {0, 1}, we sometimes write “Pr[f = o]” to denote Pry∼{0,1}ℓ [f(y) =
o]. Similarly, for π a k-round protocol over ℓ players in which each player outputs one bit per
round, we sometimes write “Pr[π = o]” to denote Prx∼({0,1}ℓ)k [π(x) = o].

3.2 Probability

3.2.1 Useful Definitions

Definition 3.1. A submartingale is a sequence of real valued random variables Z0,Z1, . . . , for
which E[Zi|Zi−1] ≥ Zi−1.

We will also need the following definition of influence of a variable with respect to a boolean
function:

Definition 3.2 (Influence). For f : {0, 1}n → {0, 1} and i ∈ [n], we say that the influence of
coordinate i on f , denoted Ii(f), is

Pr
x∼Ui−1,y∼Un−i

[|f(x, 1,y)− f(x, 0,y)|], or equivalently, Pr
z∼Un

[f(z) ̸= f(z⊕i)].

3.2.2 Helpful Claims

We will make use of the following reverse Markov style inequality:

Claim 3.3 (Reverse Markov). Let X be a random variable taking values in [0, 1]. Then, for
0 ≤ p < E[X], it holds that

Pr[X > p] ≥ E[X]− p

1− p
.

We will also use the following lower tail Chernoff bound:

Claim 3.4 (Lower tail Chernoff bound). For n ≥ 1 and p ∈ [0, 1], let X1, . . . ,Xn be independent
random variables such that for each i ∈ [n], Pr[Xi = 1] = p and Pr[Xi = 0] = 1 − p. Let
X =

∑n
i=1Xi and let µ = E[X] = pn. Then, for all δ ∈ (0, 1):

Pr[X ≤ (1− δ)µ] ≤ exp(−δ2µ/2).
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3.3 Leader Election and Collective Coin Flipping Protocols

3.3.1 Protocols in the full information model

We formalize the definition of protocols in the full information model. Collective coin flipping
protocols and leader election protocols are special cases of such protocols where the output domain
is {0, 1} and [ℓ] respectively.

Definition 3.5 (Protocol in the full information model). A k-round protocol with output domain
Y over ℓ players where each player sends r random bits per round is a function

π :
(
({0, 1}r)ℓ

)k
→ Y

that takes in the input of each of the players during each round and outputs an element from set Y
which is the outcome of the protocol.

Here is how the protocol operates in the presence of a set B ⊂ [ℓ] of bad players: In round i,
each of the players from [ℓ] \ B independently outputs a uniformly random element from {0, 1}r.
Let their collective outputs be αi ∈ ({0, 1}r)[ℓ]\B. Then, depending on α1, . . . , αi, the players in
B together output an element of ({0, 1}r)B. Hence, we model the strategy of the bad players as a
sequence of functions σ = (σ1, . . . , σk), where

σi :
(
({0, 1}r)[ℓ]\B

)i
→ ({0, 1}r)B ,

where σi takes in the inputs of the good players from the first i rounds and maps it to the output
of the bad players for round i. For a fixed strategy σ, the outcome of the protocol can be modeled
as follows: uniform random strings α1, . . . , αk ∈ ({0, 1}r)[ℓ]\B are chosen, and the outcome of the
protocol is

π(α1 : σ1(α1), α2 : σ2(α1, α2), . . . , αk : σk(α1, . . . , αk)).

We now specialize this definition to define collective coin flipping protocols

Definition 3.6 (Collective coin flipping protocol). A collective coin flipping protocol π is a protocol
in the full information model with output domain Y = {0, 1}. Furthermore, we say π is (b, γ)-
resilient if in the presence of any set B of bad players with |B| ≤ b, we have that maxo∈{0,1} Pr[π|B =
o] ≤ 1− γ.

Remark 3.7. Typically in the pseudorandomness literature, the quality of a coin flip is measured by
its distance to the uniform distribution. The definition of resilience that we use, which is standard
in the leader election and collective coin flipping literature, has a weaker requirement that each
outcome has probability at most 1 − γ. Our lower bounds results rule out, for any small γ, that
there exist coin flipping protocols that are (b, γ)-resilient, with tradeoffs between the number of
“bad” players b and the number of rounds k. On the other hand, our positive results (collective coin
flipping protocols) satisfy the stronger measure of quality that is standard in the pseudorandomness
literature: their output is ε-close to the uniform distribution over {0, 1}, for small ε, even in the
presence of bad players who are colluding using any strategies (with tradeoffs between the number
of rounds, the number of bad players, and the closeness to the uniform distribution).
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In this paper we will mostly consider the case in which r = 1 and this will be the default
assumption unless stated otherwise. Note that when k = 1, the protocol π just becomes a function
over {0, 1}ℓ; such 1-round coin flipping protocols which cannot be biased by any small set of bad
players are also known as resilient functions.

Remark 3.8. In this paper, when showing that some subset of bad players can corrupt any coin
flipping protocol, we will often construct strategies in which some subset of bad players output a
random string in some rounds. By an averaging argument we can always turn such a strategy into
one in which each bad player outputs a deterministic string in every round, while maintaining the
bias of the protocol.

We also specialize the definition of protocols to define leader election protocols:

Definition 3.9 (Leader election protocol). A leader election protocol π is a protocol in the full
information model with output domain Y = [ℓ], the number of players the protocol is operating on.
Furthermore, we say π is (b, γ)-resilient if in the presence of any set B of bad players with |B| ≤ b,
we have that Pr[π|B ∈ B] ≤ 1− γ.

3.3.2 A Useful Claim

We record the following well-known claim which states that any leader election protocol implies a
collective coin flipping protocol. For completeness, we supply a proof.

Claim 3.10. Fix γ ∈ (0, 1/2]. Let π be a k-round leader election protocol where each player sends r
bits per round and where in presence of any b bad players and their colluding strategy, π guarantees
that a good leader is chosen with probability at least γ. Then, there exists a (k+1)-round collective
coin flipping protocol π′ that is (b, γ/2)-resilient in which each player sends r bits per round.

Proof. Let π′ be the protocol that executes the protocol π in the first k rounds and in round k+1
asks the elected leader to flip a coin. Formally, say the messages sent in the first k rounds in π′ are
α. Let i be the index of the player that is chosen as the leader by π on input α. Then, in round
k + 1, π′ outputs the first bit of the message sent by player i.

We see that whenever π selects a good leader, π′ outputs a truly random coin toss, giving us
the desired resilience parameter for π′.

An immediate consequence is that proving lower bounds for con flipping protocols also gives
lower bounds for leader election protocols.

Corollary 3.11. Fix γ ∈ (0, 1/2]. Suppose that for every k round coin flipping protocol π′ over ℓ
players, there exist b bad players that can (1 − γ)-bias π towards a particular outcome o ∈ {0, 1}.
Then, for every (k − 1)-round leader election protocol π, there exist b bad players such that that a
good player is elected as a leader with probability at most 2γ.

4 Biasing a Family of Functions

In this section, we show that for any family of functions mapping {0, 1}ℓ → {0, 1}, there exists a
“common set” BR of coordinates in [ℓ] such that for almost every function f in the family, BR along
with a small “heavy set” of coordinates (which may depend on f) can together bias f . Moreover,
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crucially, neither BR nor the “heavy set” is too large. This result plays an essential role in our
main lower bound for k-round coin flipping protocols, just as its simplified version, Theorem 2.2,
played a crucial role in the sketch of our two-round lower bound given in Section 2.

Formally, we show the following:

Theorem 4.1. Let 0 < γ, δ < 1/2, h ∈ N, ℓ ∈ N be such that h log(h/2) < 40ℓ/γ and 8 ≤ h ≤ ℓ.
Let F be any family of functions from {0, 1}ℓ to {0, 1}, and for each f ∈ F let of ∈ {0, 1} be such

that Pr[f = of ] ≥ γ. Then, there exists BR ⊂ [ℓ] with |BR| ≤ 100ℓ log(1/δ)
γ log(h) such that for (1 − δ)

fraction of functions f ∈ F , there exists BH = BH(f) ⊂ [ℓ] with |BH | ≤ h such that BR ∪BH can
(1− γ)-bias f towards of .

We will use the following main lemma to prove Theorem 4.1:

Lemma 4.2. As in Theorem 4.1 let 0 < γ, δ < 1/2, h ∈ N, ℓ ∈ N be such that h log(h/2) < 40ℓ/γ
and 8 ≤ h ≤ ℓ. Let f : {0, 1}ℓ → {0, 1} and o ∈ {0, 1} be such that Pr[f = o] ≥ γ. Then, for (1− δ)

fraction of BR ⊂ [ℓ] with |BR| = 100ℓ log(1/δ)
γ log(h) , there exists BH = BH(BR) ⊂ [ℓ] with |BH | ≤ h such

that BR ∪BH can (1− γ)-bias f towards o.

Let us see how Lemma 4.2 yields Theorem 4.1:

Proof of Theorem 4.1. Let G be the bipartite graph with left vertex set U given by F and right
vertex set V consisting of all size-r subsets of [ℓ], where r = 100ℓ log(1/δ)

γ log(h) . G contains an edge between

f ∈ U and BR ∈ V if there exists BH = BH(f,BR) ⊂ [ℓ] with |BH | ≤ h such that BR ∪ BH can
(1−γ)-bias f towards of . By Lemma 4.2, the minimum left degree of this graph is at least (1−δ)

(
ℓ
r

)
.

This implies that the average right degree of this graph is at least (1 − δ) |F|, and hence, there
exists B∗

R ∈ V with degree at least (1 − δ) |F|. Thus, there must exist some fixed B∗
R such that

for (1 − δ) fraction of f ∈ F , there exists BH = BH(f) with |BH | ≤ h such that B∗
R ∪ BH can

(1− γ)-bias f towards of .

4.1 Proving the Main Lemma

In this subsection we will prove Lemma 4.2.
We will use the following concentration inequality regarding submartingales from [RSZ02]:

Lemma 4.3 (Lemma 9 of [RSZ02]). Let 0 < µ < 1, 0 < η < 1, ℓ ∈ N be arbitrary. Let Z0,Z1, . . . ,Zℓ

form a submartingale with Z0 = 0, and suppose that for i ∈ [ℓ] we have Zi − Zi−1 ∈ [0, 1] and
E[Zi − Zi−1] ≥ µ. Then,

Pr[Zℓ < (1− η)ℓµ] < e−η2µℓ/2.

We will also use the following result from [RSZ02], which follows as a slight extension of [KKL88]:

Lemma 4.4. Let 0 < γ < 1
2 , 0 < θ < 1

8 , ℓ ∈ N. Let f : {0, 1}ℓ → {0, 1} be such that γ ≤ Pr[f =
1] ≤ 1− γ. If Ii(f) ≤ θ for all i ∈ [ℓ], then

ℓ∑
i=1

Ii(f) ≥
γ log(1/θ)

20
.

Let us see how Lemma 4.2 follows using these results:
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Proof of Lemma 4.2. Without loss of generality, assume o = 1. Let r = 100ℓ log(1/δ)
γ log(h/2) . Consider the

following semi-random procedure.

1. Initialize BR ← ∅, BH ← ∅. Do the following for r steps or until Pr[f |BR∪BH
= 1] ≥ 1− γ:

(a) (Heavy Case) If there exists i ∈ [ℓ] \ (BR ∪ BH) with Ii(f |BR∪BH
) ≥ 2

h , then add i to
BH .

(b) (Random Case) Otherwise, pick a random i ∈ [ℓ] \ (BR ∪BH) and add i to BR.

We say that this procedure succeeds if at the end of this process, BR ∪BH can (1− γ)-bias f . We
will show that this procedure succeeds with high probability:

Claim 4.5. With probability ≥ 1− δ over the above process, BR ∪BH can (1− γ)-bias f towards
1.

We will prove this claim later. Using this, we now show that for 1 − δ fraction of BR, there
exists BH with |BH | ≤ h such that BR ∪BH can (1− γ)-bias f towards 1.

Firstly, since every element that is added to BH increases the probability of outputting 1 by 1
h ,

it is always the case that |BH | ≤ h. We now prove the remaining statement.
Consider a random set R ⊂ [ℓ] with |R| = r and a random permutation π of [r] so that (R,π)

determines an ordering of the elements from R. For any fixed (R, π), consider the modified random
process from above where at each step in the Random case, instead of picking a truly random
element, we pick the earliest element from R that has not yet been added to BR ∪ BH . Since the
process always ends with |BR| ≤ r, this is a well defined operation and we will always have that
BR ⊂ R. Hence if the process succeeds, we have that R ∪BH can (1− γ)-bias f towards 1.

By Claim 4.5, we know that for (1− δ) fraction of choices of (R, π), the above process succeeds.
By an averaging argument, this implies there exists a fixed permutation π∗ such that for (1 − δ)
fraction of choices of R, it holds that R∪BH (where BH = BH(R, π∗)) (1− γ)-biases f towards 1,
as desired.

We finally prove the remaining claim:

Proof of Claim 4.5. For j ∈ [r], let the variable chosen at each step j of the above semi-random
process be vj . For j ∈ [r], let:

Xj =

{
Ivj (f |v1,...,vj−1) if Pr[f |v1,...,vj−1 = 1] < 1− γ

1 otherwise

At every step j ∈ [r] where Pr[f |v1,...,vj−1 = 1] < 1 − γ (note that since initially Pr[f = 1] ≥ γ,
this also holds at all steps j as well), by Lemma 4.4, either there exists a variable with influence 2

h

or the sum of influences of all the variables is at least γ log(h/2)
20 . By our choice of h we have that

2
h ≥

γ log(h/2)
20ℓ , and so for all j ∈ [r], E[Xj |X1, . . . ,Xj−1] ≥ γ log(h/2)

20ℓ .
For j ∈ [r], let Zj =

∑
k≤j Xk. We then see that Z1, . . . ,Zr form a submartingale with Z0 = 0.

We also have that

E[Zr|Z1, . . . ,Zr−1] =
rγ log(h/2)

20ℓ
≥ 4 log(1/δ),

where in the last inequality, we used the fact that r = 100ℓ log(1/δ)
γ log(h/2) . Applying Lemma 4.3 (with

η = 1
2), we infer that

Pr[Zr < 2 log(1/δ)] ≤ e−1/4(4 log(1/δ)) < (1/e)log(1/δ) < δ.
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Since δ < 1
2 , 2 log(1/δ) > 2. Hence, with probability at least 1− δ, we have Zr > 2.

We claim that whenever this happens, we must be in the case that Pr[f |BR∪BH
= 1] ≥ 1 − γ.

For 1 ≤ j ≤ r, let the random variables Xj ,Zj take on values xj , zj respectively. Let j∗ ≤ r be
such that at the end of that step, Pr[f |v1, . . . , vj∗ = 1] ≥ 1− γ; if this doesn’t happen by then, let
j∗ = r + 1. Then, since we picked an influential variable and bias it towards 1, for 1 ≤ j ≤ j∗ we
have that

Pr[f |v1, . . . , vj−1, vj = 1] ≥ Pr[f |v1, . . . , vj−1 = 1] + xj/2.

So, for all 1 ≤ j ≤ j∗,
Pr[f |v1, . . . , vj−1, vj = 1] ≥ γ + zj/2

Since the probability of any event is always less than 1, and we know that zr ≥ 2, it must be
the case that j∗ ≤ r. So, we have that at the end of step j∗, Pr[f |v1, . . . , vj∗ = 1] ≥ 1 − γ and
the process succeeded. Hence, the process indeed succeeds with probability 1− δ as desired. This
concludes the proof of Claim 4.5.

This concludes the proof of Lemma 4.2.

5 Biasing Coin Flipping Protocols

We will prove the following lower bound regarding coin flipping protocols:

Theorem 5.1. There exist universal constants C = 107, ℓ0 ∈ N such that for all k ∈ N, ℓ ∈
N, 0 < γ < 1/4, the following holds: For any k-round coin flipping protocol π over ℓ ≥ ℓ0 players
where Pr[π = 1] ≥ γ, there exists a set of bad players B ⊂ [ℓ] with |B| ≤ Cℓ

γ log(k)(ℓ)
such that

Pr[π|B = 1] ≥ 1− γ.

From this, we obtain the following lower bound on the number of rounds required for coin
flipping in the presence of a linear sized coalition of bad players:

Corollary 5.2. There exist universal constants ℓ0, C such that for all ℓ ∈ N where ℓ ≥ ℓ0, the
following holds: Let π be a k-round coin flipping protocol where k ≤ log∗(ℓ)−C. Then, there exists
a a set of bad players B ⊂ [ℓ] with |B| ≤ 0.01ℓ and o ∈ {0, 1} such that Pr[π|B = o] ≥ 0.999.

To prove Theorem 5.1, we will primarily utilize Theorem 4.1. We will also use a simpler result
that can be established by inductively applying the KKL theorem [KKL88]:

Theorem 5.3 (KKL). There exists a universal constant C ≤ 107 such that for all ℓ ∈ N, γ > 0 the
following holds: Let f : {0, 1}ℓ → {0, 1} be such that Pr[f = 1] ≥ γ. Then, there exists a set of bad
players B with |B| ≤ Cℓ

γ log(ℓ) such that Pr[f |B = 1] ≥ 1− γ.

Using this, we finally prove our main theorem:

Proof of Theorem 5.1. We apply induction on k ≥ 1. For k = 1, the result follows by Theorem 5.3
For k ≥ 2, we present an ‘algorithm’ which, given as input the protocol π, produces a small coalition
of bad players that (1− γ)-biases π towards 1.
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Setup. We will maintain two kinds of bad players: First, let BR, BH ⊂ [ℓ] be the sets of bad
players that we will use to bias round k. Second, we let BI ⊂ [ℓ] be the set of bad players that we
will use to bias rounds 1 to k − 1 (these will be provided to us by induction). At the end, we will
take the union of all these sets, and that will be the final set of bad players that we will use to bias
π. Let h, c ∈ [ℓ] be parameters that we set later (for intuition, h will be set to be very small and c
will be set to be very large).

Given α ∈ ({0, 1}ℓ)(k−1), we write πα(x) to denote the function from {0, 1}ℓ to {0, 1} that
corresponds to the output of the protocol when the bits that the ℓ players output in rounds 1, . . . , k−
1 are given by α and the bits that the players output in round k are given by x.

Informal description of algorithm. Since Pr[π = 1] ≥ γ, for a non-trivial fraction of α ∈
({0, 1}ℓ)k−1, the induced function πα : {0, 1}ℓ → {0, 1} has a non-trivial probability of outputting
1. For the family of functions consisting of all such πα, we use Theorem 4.1 to find a set BR such
that for most such α, there exists a set H = g(α) with |H| = h such that BR ∪ g(α) can bias πα
towards 1. We then use induction for the first time, biasing players from the first k − 1 rounds, so
that the overall fraction of α for which BR ∪ g(α) can bias πα towards 1 becomes at least 3/4.

Note that the function g : ({0, 1}ℓ)k−1 → 2[ℓ] can be viewed as g(α) = (g1(α), . . . , gh(α)) where
each gj maps ({0, 1}ℓ)k−1 to [ℓ] and the value gj(α) is simply the j-th largest element of the set
g(α). We will inductively find bad players that can bias each of g1, . . . , gh so that over most inputs,
their image lies in a set of size c.

We maintain sets C1, . . . , Ch so that each of g1, . . . , gh outputs an element from these respective
sets with high probability. Initially all these sets are set to equal [ℓ]. We then iteratively find some
Cj such that |Cj | ≥ c and cut Cj in half. Doing this decreases by a factor of 2 the fraction of inputs
α whose outputs fall into the sets C1, . . . , Ch ; so the fraction of inputs α for which BR ∪ g(α) can
corrupt πα is halved. To fix this, we use induction for a second time and find bad players that can
corrupt the first k − 1 rounds so that this fraction again becomes at least 3/4.

At the end of this process, we are guaranteed that |C1| ≤ c, . . . , |Ch| ≤ c. We then once again
for a third time use induction and find bad players to bias the first k−1 rounds so that the fraction
of α for which BR ∪ g(α) can corrupt πα is as large as desired. We collect the union of the set of
bad players outputted by g, i.e. the union of sets C1, . . . , Ch, along with BR and the bad players
from all our inductive calls and let that be our final set of bad players.

We now briefly describe the parameters. Since we cut each of C1, . . . , Ch in half until its size
is less than c, the second time we use induction we call the inductive hypothesis h log(ℓ/c) +O(1)
times and this will dominate the cost of our inductive calls. Each call adds ℓ/ log(k−1)(ℓ) bad
players. We also get hc+ |Br| = hc+O(ℓ/ log(h)) bad players that will bias the last round. Setting

h =
(
log(k−1)(ℓ)

)1/C0

and c = ℓ/
(
log(k−1)(ℓ)

)C0

for some large constant C0 yields the desired

bound.

Formal description of algorithm. Formally, our algorithm proceeds as follows:

1. Let BR, BH , BI ← ∅. We begin by biasing the last round.

(a) For each α ∈
(
{0, 1}ℓ

)k−1
, let πα : {0, 1}ℓ → {0, 1} be the induced round k protocol.

(b) Set F = {πα}E[πα]≥γ/2 and apply Theorem 4.1 to F with parameters h, γ/2 and δ = 1/3.

Let BR be the set given by Theorem 4.1, and for α ∈
(
{0, 1}ℓ

)k−1
let g :

(
{0, 1}ℓ

)k−1 →
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([ℓ])h∪⊥ be such that (viewing g(α) as a set in the obvious way) BR∪g(α) can (1−γ/2)-
bias πα towards 1 if possible, otherwise g(α) = ⊥.
We assert that Pr[g ̸= ⊥] ≥ γ/6 (this will be proven in Claim 5.4).

(c) Let π
(1)
temp be the (k − 1)-round protocol such that π

(1)
temp(α) = 1 iff g(α) ̸= ⊥. We have

that Pr[π
(1)
temp = 1] ≥ γ/6. By induction (the first use of induction mentioned in the

informal overview) we can find a set of bad players, which we denote B
(1)
temp, so that

Pr[π
(1)
temp|B(1)

temp
= 1] ≥ (1− γ/6) ≥ 3/4. Add all the bad players from B

(1)
temp to BI .

2. We now find bad players that can bias g. Initialize sets C1 = · · · = Ch = [ℓ]. We will change
these sets below while maintaining the following invariant:

(∗) For every α, if there exists j ∈ [h] such that gj(α) ̸∈ Cj , then g(α) = ⊥.
(Equivalently, if g(α) ̸= ⊥, then gj(α) ∈ Cj for all j ∈ [h].)

We iteratively bias players from rounds 1 to k−1 so that for all j ∈ [h], Cj will have |Cj | ≤ c.
At the end of each iteration, we maintain that Pr[g ̸= ⊥] ≥ 3/4 (this is equivalent to having
Prα[g1(α) ∈ C1, . . . , gh(α) ∈ Ch] ≥ 3/4). This is done as follows:

(a) While there exists j ∈ [h] with |Cj | > c, do the following:

i. Let X be a random subset of Cj of size |Cj | /2. Since Prα[gj(α) ∈ Cj ] ≥ 3/4, we

have that EX[Pr[gj(α) ∈ X]] ≥ 3/8. So, there exists C ′
j ⊂ [ℓ] with

∣∣∣C ′
j

∣∣∣ = |Cj | /2
such that Prα[gj(α) ∈ C ′

j ] ≥ 3/8.

ii. Update Cj ← C ′
j and let gj(α) = ⊥ if gj(α) ̸∈ Cj . We now have Prα[g(α) ̸= ⊥] ≥

3/8 ≥ 1/4.

iii. Let π
(2)
temp be the (k − 1)-round protocol such that π

(2)
temp(α) = 1 iff g(α) ̸= ⊥. We

have that Pr[π
(2)
temp = 1] ≥ 1/4. By induction (the second use of induction mentioned

in the informal overview), we can find a set of bad players, which we denote B
(2)
temp,

so that Pr[π
(2)
temp|B(2)

temp
= 1] ≥ 3/4. Add all the bad players from B

(2)
temp to BI .

3. Let π
(3)
temp be the (k − 1)-round protocol such that π

(3)
temp(α) = 1 iff g(α) ̸= ⊥. We have

that Pr[π
(3)
temp = 1] ≥ 3/4 ≥ γ/2. By induction (the third use of induction mentioned in

the informal overview), we can find a set of bad players, which we denote B
(3)
temp, so that

Pr[π
(3)
temp|B(3)

temp
= 1] ≥ 1− γ/2. Add all the bad players from B

(3)
temp to BI .

4. Finally, let BH =
⋃

j∈[h]Cj .

Correctness of the algorithm. We now prove the correctness of our procedure above. We first
prove the following claim that we informally asserted at end of step 1(b) above:

Claim 5.4. At the end of step 1(b), Pr[g ̸= ⊥] ≥ γ/6.
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Proof. Using the reverse Markov argument from Claim 3.3, since Pr[π = 1] ≥ γ, we have that
|F|

2(k−1)ℓ =
|α∈({0,1}ℓ)(k−1):E[πα]≥γ/2|

2(k−1)ℓ ≥ γ/4. Since we set δ = 2/3 while using Theorem 4.1, we indeed
infer that Pr[g ̸= ⊥] ≥ γ/6.

Lastly, we show that the protocol is indeed (1− γ) biased by our set of bad players. At the end
of the last step, we have that Pr[g ̸= ⊥] ≥ (1− γ/2). Moreover, by the choice of BR and g in step

1, we know that if for α ∈
(
{0, 1}ℓ

)k−1
we have that g(α) ̸= ⊥, then BR ∪ g(α) can bias πα so that

Pr[πα|BR∪BH
= 1] ≥ 1− γ/2. Combining these, we conclude

Pr[π|BR∪BH∪BI
= 1] ≥ Pr[g ̸= ⊥] · (1− γ/2) ≥ (1− γ/2)2 ≥ 1− γ

as desired.

Setting parameters. We finally set parameters. We set h =
(
log(k−1)(ℓ)

)1/104

, c =
ℓ

(log(k−1)(ℓ))
104

. Recalling Theorem 4.1, we see that

|BR| ≤
100ℓ log(3/2)

γ log(h)
≤ 106ℓ

γ log(k)(ℓ)
. (1)

We also have that

|BH | ≤ c · h ≤ ℓ(
log(k−1)(ℓ)

)104
·
(
log(k−1)(ℓ)

)1/104

≤ ℓ(
log(k−1)(ℓ)

)104−1
(2)

We see that the while loop of step 2(b) iterates for at most h · log(ℓ/c) ≤ 104 log(k)(ℓ) ·(
log(k−1)(ℓ)

)1/104

steps. In each iteration, we inductively have
∣∣∣B(2)

temp

∣∣∣ ≤ 107ℓ
(1/4) log(k−1)(ℓ)

. We also

call our inductive bound twice, once before the loop and once after, and for each of these calls the

corresponding sets inductively satisfy
∣∣∣B(1)

temp

∣∣∣ , ∣∣∣B(3)
temp

∣∣∣ ≤ 107ℓ
(γ/6) log(k−1)(ℓ)

. This gives

|BI | ≤ h·log(ℓ/c)· 107ℓ

(1/4) log(k−1)(ℓ)
+2· 107ℓ

(γ/6) log(k−1)(ℓ)
≤ 1012 log(k)(ℓ)(

log(k−1)(ℓ)
)1−1/104

+
109ℓ

γ log(k−1)(ℓ)
. (3)

Hence, the total number of bad players we used is

|BR|+ |BH |+ |BI | ≤
106ℓ

γ log(k)(ℓ)
+

ℓ(
log(k−1)(ℓ)

)104−1
+

1012 log(k)(ℓ)(
log(k−1)(ℓ)

)1−1/104
+

109ℓ

γ log(k−1)(ℓ)

≤ 107ℓ

γ log(k)(ℓ)

wherein for the last inequality, we set ℓ0 large enough and use the fact that ℓ ≥ ℓ0.
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5.1 Protocols with Longer Messages

In this subsection, we show that coin flipping protocols in which each player is allowed to send more
than one bit per round can also be biased by relatively few bad players. In particular, we show:

Theorem 5.5. There exist universal constants C = 107, ℓ0 ∈ N such that for all k ∈ N, ℓ ∈
N, 0 < γ < 1/4, 0 < δ < 1/106, ε, r1, . . . , rk ∈ N where ε ≥ C log(1/γδ) log(k+2)(ℓ)

log(k+1)(ℓ)
and for i ∈ [k],

1 ≤ ri ≤ (log(i)(ℓ))1−ε, the following holds: Let π be a k-round coin flipping protocol over ℓ ≥ ℓ0
players where Pr[π = 1] ≥ γ and in round i, each player is allowed to send ri bits. Then, there
exists a set of bad players B ⊂ [ℓ] with |B| ≤ δℓ such that Pr[π|B = 1] ≥ 1− γ.

Setting parameters, we obtain the following corollaries regarding corrupting protocols using
0.001ℓ many bad players:

Corollary 5.6. Let ∆ : N → N be such that ∆(ℓ) ≥ ω(1). Then, there exists ε : N → [0, 1] where
ε(ℓ) ≤ o(1) and ℓ0 ∈ N such that for all k, ℓ ∈ N with ℓ ≥ ℓ0, and k ≤ log∗(ℓ)−∆(ℓ), the following
holds: Let π be a k round protocol over ℓ players where in round i ∈ [k], the number of bits each
player can send is at most ri = (log(i)(ℓ))1−ε(ℓ) = (log(i)(ℓ))1−o(1). Then, there exists a set of bad
players B ⊂ [ℓ] and an outcome o ∈ {0, 1} with |B| ≤ 0.001ℓ such that Pr[π|B = o] ≥ 0.999.

In this first corollary, we let the number of round be log∗(ℓ)−∆(ℓ) where ∆(ℓ) ≥ ω(1) and from
that obtained a constraint on number of bits per round. We also note down the following corollary
which follows from setting ∆ to be a very large fixed constant:

Corollary 5.7. There exists universal constants ℓ0,∆ ∈ N such that for all k, ℓ ∈ N with ℓ ≥ ℓ0,
and k ≤ log∗(ℓ) − ∆, the following holds: Let π be a k round protocol over ℓ players where in
round i ∈ [k], the number of bits each player can send is at most ri = (log(i)(ℓ))0.999. Then,
there exists a set of bad players B ⊂ [ℓ] and an outcome o ∈ {0, 1} with |B| ≤ 0.001ℓ such that
Pr[π|B = o] ≥ 0.999.

To prove Theorem 5.5, we will slightly modify the proof of Theorem 5.1 and set parameters
differently. Here’s how we proceed:

Proof of Theorem 5.5. We proceed by induction on k. For k = 1, we view the protocol π : ({0, 1}r1)ℓ
as a function over ℓ · r1 bits and apply Theorem 5.3 to find a set B ⊂ [ℓr] with |B| ≤ Cℓr1

γ log(ℓr1)
such

that if all bits in B are controlled by bad players, then they can (1− γ)-bias π towards 1. We let
B′ ⊂ [ℓ] denote the set of players that control all of the bits in B. We see that

∣∣B′∣∣ ≤ |B| ≤ Cℓr1
γ log(ℓr1)

≤ Cℓ(log(ℓ))1−ε

γ log(ℓ)
=

Cℓ

γ(log(ℓ))ε

We need to show |B′| ≤ δℓ, or equivalently that C
γ(log ℓ)ε ≤ δ. We rewrite this inequality as

ε ≥ log(C/γδ)

log(2)(ℓ)
which holds by choice of ε.

For k ≥ 2, we proceed by using the same exact algorithm as in Theorem 5.1 - for α ∈ {0, 1}r1 ×
· · · × {0, 1}rk−1 , we view πα : ({0, 1}rk)ℓ as a function over ℓrk bits. We set some parameters c, h
and find sets BR, BH , BI where BR, BH will find bad bits for the last round and BI will apply
induction to find bad players that can corrupt the first i− 1 rounds. When applying induction for
(k − 1)-round protocols, we call it with parameter δI that we set later. So, our inductive calls to
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k−1 round protocol will be such that it corrupts at most δIℓ bad players. We will then choose bad
players for the last round such that they will control the bits that are in BR ∪BH . We see that in
that case, the number of bad players we control over last round is at most |BR|+ |BH |.

Before setting parameters, we first recall from Equation (1) and Equation (2) that |BR| ≤
100ℓrk log(3/2)

γ log(h) and |BH | ≤ c ·h. We also see, from Equation (3) and the discussion preceding it, that

|BI | ≤ (h · log(ℓ/c) + 2) · δIℓ. Also to enforce that we overall have δℓ bad players, we will ensure
|BR| ≤ δℓ

4 , |BH | ≤ δℓ
4 and |BI | ≤ δℓ

4 .

We finally set parameters. We let h be such that log h = 400 log(3/2)(log(k)(ℓ))1−ε

γδ and let c = δℓ
4h .

We set δI = δ/h2. We now bound each of BR, BH , BI and also, we show that we can indeed set δI
to the prescribed value for induction, checking that it satisfies the restriction on ε. First, we bound
|BR|:

|BR| ≤
100ℓrk log(3/2)

γ log(h)
=

δℓrk

4(log(k)(ℓ))1−ε
≤ δℓ

4
.

Second, we bound |BH |:

|BH | ≤ c · h ≤ δℓ

4
.

Finally, we bound |BI |. To do that, we first observe that by choice of h, we have that h > log(h)
106

and h > log(1/δ)
106

. So, 2 log(4h/δ) < h/4. Using this, we see:

|BI | = (h log(ℓ/c) + 2)δIℓ

≤ 2(h log(ℓ/c))
δ

h2
ℓ

=
2 log(4h/δ)

h
· δℓ

≤ δℓ

4
,

where in the last inequality we used the bound 2 log(4h/δ) < h/4. Lastly, we show that we can

indeed set δI to the desired value, i.e., that ε ≥ C log(1/γδI) log
(k+1)(ℓ)

log(k)(ℓ)
. To show this inequality holds,

we will make use of the fact that ε ≥ C log(1/γδ) log(k+2)(ℓ)

log(k+1)(ℓ)
. We see that

C log(1/γδI) log
(k+1)(ℓ)

log(k)(ℓ)
=

C log(h2/γδ) log(k+1)(ℓ)

log(k)(ℓ)

≤ C log(h3) log(k+1)(ℓ)

log(k)(ℓ)
(since h ≥ (1/γδ))

=
3C log(h) log(k+1)(ℓ)

log(k)(ℓ)

=
1200 log(3/2)C(log(k)(ℓ))1−ε log(k+1)(ℓ)

log(k)(ℓ)

≤ 1200C log(k+1)(ℓ)(
log(k)(ℓ)

)ε
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Hence, it suffices to show that 1200C log(k+1)(ℓ) ≤ ε(log(k)(ℓ))ε. Equivalently, we want to show
that log(1200C) + log(k+2)(ℓ) ≤ log(ε) + ε(log(k+1)(ℓ)). This last inequality indeed holds since by

assumption we have that ε ≥ C log(k+2)(ℓ)

log(k+1)(ℓ)
.

6 Constructing Improved Constant-Round Coin Flipping Proto-
cols

Our main results in this section are improved explicit constant-round coin flipping protocols, where
each player is allowed to send one bit per round. Formally, we prove:

Theorem 6.1. For any k, ℓ ∈ N, 0 < γ < 1/2 with k ≥ 2, there exists a k-round coin flipping
protocol over ℓ players with each player sending one bit per round such that when the number
of bad players is at most γℓ

log(ℓ)(log(k)(ℓ))2
, the output coin flip is ε-close to uniform where ε =

O

(
γ +

(
log(k−1)(ℓ)

)−0.2
)
.

To help construct our protocol, we need to introduce the following notion of an assembly :

Definition 6.2 (Assembly). A (b, n, s)-assembly over ℓ players, where each player is labeled either
‘good’ or ‘bad,’ is a collection of n disjoint subsets S1, . . . , Sn ⊂ [ℓ], each of size s, with the following
property:

• There exists some fixed B ⊂ [n] with |B| ≤ b such that if i ̸∈ B, then the set Si and all players
within it are labeled as good. We say that such sets are ‘good’ and that the remaining sets are
‘bad.’

We will use the following ways of transforming a given assembly into an assembly with different
parameters (the proof will be given later):

Lemma 6.3 (Transforming assemblies). Let b, n, s be arbitrary and let A be a (b, n, s)-assembly.
Then we can explicitly transform A, oblivious to which players are labelled good or bad, in any of
the following ways (without changing the underlying labels of players being good or bad):

1. (Grouping) For any t ≥ 1, in 0 rounds, A can be transformed into a (b, n/t, st)-assembly.

2. (Splitting) For any t ≥ 1, in 0 rounds, A can be transformed into a (bt, nt, s/t)-assembly.

3. (Feige’s Lightest Bin Protocol [Fei99]) For any β ≤ 2s, 0 < δ < 1, in 1 round, A can

be transformed into a
(

b
β + δ(n−b)

β , nβ , s
)
-assembly, with success probability at least 1 − β ·

exp
(
−δ2(n−b)

2β

)
We will also use the following explicit resilient function. This can be viewed as a one-round

operation which, given a suitable assembly, generates an almost-fair coin toss. Formally:

Lemma 6.4 (Resilient function from [AL93, IV24]). In one round, a (b, n, s)-assembly can be used

to output a single bit ∈ {0, 1} that is O
(
b(log(n))2

n + n−0.99
)
close to uniform.

Let us show that using Lemmas 6.3 and 6.4 we can obtain our desired k-round protocol.

Proof of Theorem 6.1 using Lemmas 6.3 and 6.4. We first informally describe our protocol and
then we will formally describe it and analyze it.
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Informal description First, we arbitrarily group players together and treat each group as a
single entity (each group will correspond to a set of the assembly) which has access to multiple
random bits. We will have many such entities, and most of them will contain solely of good players;
call those ‘good’ entities and the remaining entities ‘bad’ entities. Then, we make these entities
participate in one round of the lightest bin protocol with many bins. This vastly reduces the
number of entities while roughly maintaining the absolute fraction of entities that are bad. We
then again split each of the entities into many entities with fewer players in each one of them.
This still maintains the absolute fraction of entities that are bad. We then repeat the lightest bin
protocol and continue doing this until it is time for the last round. In the last round, we take one
player from each entity and apply a resilient function to obtain our output coin flip.

Formal protocol We formally proceed as follows. Since we know that at most γℓ

log(ℓ) log(k)(ℓ)

players are bad, our input set of players form a
(

γℓ

log(ℓ) log(k)(ℓ)
, ℓ, 1

)
-assembly. Our protocol will

repeatedly perform transformations on this assembly as described below. (We remark that the
warmup case discussed in Section 2.5 (the case of k = 2) corresponds to performing only steps 1
and 3 below.)

1. In the first round we proceed as follows:

(a) We use transformation 1 from Lemma 6.3 (grouping), setting t = 3 log(ℓ), to transform

our
(

γℓ

log(ℓ) log(k)(ℓ)
, ℓ, 1

)
-assembly into a

(
γℓ

log(ℓ) log(k)(ℓ)
, ℓ
3 log(ℓ) , 3 log(ℓ)

)
-assembly.

(b) We use transformation 3 from Lemma 6.3 (Feige’s lightest bin protocol) with β =
ℓ

(log(ℓ))3
, δ = (log(ℓ))−0.25 to transform the

(
γℓ

log(ℓ) log(k)(ℓ)
, ℓ
3 log(ℓ) , 3 log(ℓ)

)
-assembly into

a
(

γ(log(ℓ))2

(log(k)(ℓ))2
+ (log(ℓ))1.76, (log(ℓ))

2

3 , 3 log(ℓ)
)
-assembly, succeeding with probability ≥

1− ℓ exp
(
−(log(ℓ))1.49

)
.

2. For rounds 2 to k − 1, we proceed as follows: In round i, we are given a(
γ(log(i−1)(ℓ))2

(log(k)(ℓ))2
+ (log(i−1)(ℓ))1.76, (log

(i−1)(ℓ))2

3 , 3 log(i−1)(ℓ)
)
-assembly.

(a) We use transformation 2 from Lemma 6.3 (splitting), setting t = log(i−1)(ℓ)

log(i)(ℓ)
, to transform

our assembly above into a
(

γ(log(i−1)(ℓ))3

log(i)(ℓ)(log(k)(ℓ))2
+ (log(i−1)(ℓ))2.76, (log

(i−1)(ℓ))3

3 log(i)(ℓ)
, 3 log(i)(ℓ)

)
-

assembly.

(b) We use transformation 3 from Lemma 6.3 (Feige’s lightest bin pro-

tocol) with β = (log(i−1)(ℓ))3

(log(i)(ℓ))3
, δ = (log(i)(ℓ))−0.25 to transform the(

γ(log(i−1)(ℓ))3

(log(i)(ℓ))(log(k)(ℓ))2
+ (log(i−1)(ℓ))2.76, (log

(i−1)(ℓ))3

3 log(i)(ℓ)
, 3 log(i)(ℓ)

)
-assembly into a(

γ(log(i)(ℓ))2

(log(k)(ℓ))2
+ (log(i)(ℓ))1.76, (log

(i)(ℓ))2

3 , 3 log(i)(ℓ)
)
-assembly, succeeding with proba-

bility ≥ 1− (log(i−1)(ℓ))3 exp
(
−(log(i)(ℓ))1.49

)
.

3. In round k, we are given a
(
γ(log(k−1)(ℓ))2

(log(k)(ℓ))2
+ (log(k−1)(ℓ))1.76, (log

(k−1)(ℓ))2

3 , 3 log(k−1)(ℓ)
)
-

assembly. We use the resilient function from Lemma 6.4 to obtain a single output bit ∈ {0, 1}
that is O

(
γ + (log(k−1)(ℓ))−0.23

)
close to uniform.
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By a union bound over all k rounds (the failure probability is dominated by the i = k − 1
iteration of step 2(b) above), we get that all our transformations succeed with probability 1 −
exp(−(log(k−1)(ℓ))1.48). In such an event, the error from our final round - round k from applying the

resilient function is O
(
γ + (log(k−1)(ℓ))−0.23

)
. Since (log(k−1)(ℓ))−0.23 > exp(−(log(k−1)(ℓ))1.48),

we get that the final error of our coin flip is at most O
(
γ + (log(k−1)(ℓ))−0.2

)
as desired.

It remains to prove that we can indeed obtain each of the transformations described earlier.

Proof of Lemma 6.3. We present proofs of each of the claimed transformations.

1. To do this, we arbitrarily partition [n] into parts of size t and take the union of all sets that
are in the same part. The number of sets indeed decreases to n/t and the size of each set
increases to st. Also, since b sets were bad, there are at most b parts which have at least
one bad set. For the rest of the parts, all the players in each of the sets comprising the part
are good, and hence after taking the union, the resulting set will also only consist of good
players.

2. To do this, we split each set Si arbitrarily into t parts. We indeed obtain tn sets of size s/t
each. Moreover, whenever we split a set consisting of only good players, all of the resulting
sets only consist of good players. Hence, the number of such sets in the resultant assembly is
(n− b)t = nt− bt as desired.

3. To do this, we use Feige’s lightest bin protocol from [Fei99]. In particular, we set up β bins
B1, . . . , Bβ which receive ‘votes’ as follows. In one round, the players in each set S1, . . . , Sn

each flip a random coin. For each set Si, we interpret their s coin flips together as generating
a random number between 1 and β (since β ≤ 2s) and that number is the ‘vote’ for which
bin the set should go to. After this voting process, we pick the lightest bin (the one that has
received the fewest votes), say Bi∗ , and let the sets in that bin (along with arbitrary other
sets, chosen in some canonical way so that number of sets in the output assembly is n/β)
form the output assembly .

We analyze the process described above. We treat all players in any bad set as bad, i.e., they
are allowed to cast their votes after seeing the votes of all the good sets. We first note that
the number of sets in the lightest bin Bi∗ is at most n/β (since there are n sets and β bins).
Hence, the above process always outputs an assembly consisting of n/β many sets of size s
each. We now lower bound the number of good players in each of the bins. Fix any bin i ∈ [β]
and let Xi be the random variable representing the number of good sets that voted i. We
think of the vote of each of the good sets as independently choosing whether to vote for bin
i or not, where the vote is cast for bin i with probability 1/β. Hence E[Xi] = (n− b)/β, and
by the Chernoff bound Claim 3.4, we have that

Pr[gi ≤ (1− δ)(n− b)/β] ≤ exp

(
−δ2(n− b)

2β

)
.

We take union bound over all β bins to infer that with probability at least 1−β exp
(
−δ2(n−b)

2β

)
,

every bin will have at least (1−δ)(n−b)
β good sets. As this is true for all bins, this is also true
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for the lightest bin i∗. Hence the number of bad sets in bin i∗ is at most

n

β
− (1− δ)(n− b)

β
=

b

β
+

δ(n− b)

β

as desired.

7 Conclusion and Open Problems

There still remains a gap between the best known upper bounds and lower bounds for coin flipping
protocols. For instance, even when restricted to two-round protocols, our protocols from Theo-
rem 6.1 can handle ℓ

(log ℓ) poly(log(2) ℓ)
bad players while our lower bound from Theorem 5.1 requires

ℓ
log(2) ℓ

bad players. Towards proving stronger lower bounds to bridge this gap, we present the

following question regarding simultaneously biasing functions.

Question 7.1 (Simultaneous biasing). Prove or disprove the following: Let f = (f1, . . . , fm) :
{0, 1}ℓ → {0, 1}m where m = ℓ0.01 be an arbitrary map. Then, there exist B ⊂ [ℓ], P ⊂ [m], o ∈
{0, 1}|P | with |B| ≤ O(ℓ/ log ℓ), |P | = 0.01m such that for g = f |B, and all i ∈ [P ], Pr[gi = oi] ≥
0.99.

Note that a much weaker version of Question 7.1 indeed holds by Theorem 4.1. The difference
is that in Theorem 4.1, the (slightly different) sets of bad players can corrupt each fi differently
while here we want each of the functions indexed by P to be simultaneously corrupted not only by
the same set of bad players B, but also by the same behavior of the bad players in that set.

We note that when m = O(1), by repeatedly applying the result of [KKL88], Question 7.1
does hold. However, that strategy requires more than n players once m ≥ log ℓ, which is trivial.
Answering the above question in the positive will lead to almost matching lower bounds for coin

flipping - in particular, this would imply that ℓ poly(log(2) ℓ)
log ℓ bad players suffice to bias any two-round

protocol. This bound would follow by using the same strategy as the proof of Theorem 5.1, with
the ‘second induction step’ replaced by the simultaneous biasing conjecture. For multi-round lower
bounds nearly matching our constructions from Theorem 6.1, we would need a stronger version of
Question 7.1 where we would want to simultaneously bias not just a function map but a k-round
protocol map.
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