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Randomness in Computation

Randomized algorithms are everywhere!

® Many use randomness to sample a random object (e.g., graph, function,
etc..) that has a “nice” property with 99% probability.

BUT perfect randomness doesn’t exist in the real world!

Can get around this by explicitly constructing objects that look
“pseudorandom” and have these nice properties.
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Pseudorandomness

Existence

Show that a random object (e.g., graphs, functions, ..) has very nice
properties via the probabilistic method (usually easy).

Explicit construction

Explicitly (in polynomial time) construct a deterministic object with those
properties (HARD).



Part 0: Introduction to Expanders




Types of Expanders

Have similar connectivity to a complete graph while having low degree
(sparse).
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Edge

Large fraction of
edges from a set
leave the set.

Cheeger
X

Spectral

Random walks mix
well. Adjacency
matrix has Ay <

2¢/D -1

Vertex

Small sets have
almost as many
neighbors as pos-
sible.



Types of Expanders
Edge Spectral Vertex

Cheeger Kahale
X

—r =

Large fraction of Random walks mix Small sets have
edges from a set well. Adjacency almost as many
leave the set. matrix has Ay < neighbors as pos-

2v/D —1 sible.
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Vertex Expanders

Vertex Expander

e A D-regular graph G = (V,E) is a (K, ¢)-expander if for every set S C V of
size at most K, the neighborhood I'(S) has size at least (1 —¢) - D - |S].
® When e =~ 0.01, we call G a lossless expander.

Theorem (Kahale’95)

There exist Ramanujan graphs (optimal spectral expanders) that are only
(K=Q(|V|),e > 1/2)-vertex expanders.
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Vertex Expanders

II'(SL)| ~ Dy - |S]
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Dp - |Sg| =~ [T'(Sp)|
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Vertex Expanders

Bipartite Vertex Expander

® A (D,,Dg)-biregular graph G = (L LR, E) is a one-sided (K, ¢, )-lossless
expander if forall S C L s.t. |S| <K, then |[I'(S)| > (1 —¢,) - D, - |S|.

® Gisatwo-sided (K., e, Kz, cp)-lossless expander if, moreover, for all
SCRst. |S| <Kpthen|T'(S)| > (1 —¢g)-Dg-|3|.

With N = |L| and M = |R

, we can view G instead as its neighborhood function:

I':[N] x [D] — [M]
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Bipartite Vertex Expander

® A (D,,Dg)-biregular graph G = (L LR, E) is a one-sided (K, ¢, )-lossless
expander if forall S C L s.t. |S| <K, then |[I'(S)| > (1 —¢,) - D, - |S|.

® Gisatwo-sided (K., e, Kz, cp)-lossless expander if, moreover, for all
SCRst. |S| <Kpthen|T'(S)| > (1 —¢g)-Dg-|3|.

Balanced and Unbalanced Bipartite Expanders

e If M = O(N), we say G is balanced.
* If M = O(\°), for some 0 < § < 1, we say G is unbalanced.



Bipartite Vertex Expanders are Useful

Unbalanced

e Condenser and extractor constructions [ Ta-Shma, Umans,
Zuckerman’01;Ta-Shma, Umans’06; Guruswami, Umans, Vadhan'09; Dvir,
Kopparty, Saraf, Sudan’13 ]

e Derandomization [ Doron, Tell'23 ]

® Probabilistic data structures [ Upfal, Wigderson’87; Buhrman, Miltersen,
Radhakrishnan, Venkatesh’02 ]

e Complexity lower bounds [ Ben-Sasson, Wigderson'01; ...; Alekhnovich,
Ben-Sasson, Razborov, Wigderson’04 ]



Bipartite Vertex Expanders are Useful

e Classical codes [ Sipser, Spielman’96; Luby, Mitzenmacher, Shokrollahi,
Spielman’01; Tanner’03 ]

® Quantum codes” [ Lin, Hsieh'22 |

e Distributed routing algorithms* [ Pele, Upfal’89; ...; Hoory, Magen,
Pitassi’06 |

“Uses two-sided expansion



An Abridged History of Vertex Expanders

D,-regular G = ([N] Ll [M], E) with max expanding set size K; and K and factor ¢

Reference(s) | M D.(}) KM K =)




An Abridged History of Vertex Expanders

D,-regular G = ([N] Ll [M], E) with max expanding set size K; and K and factor ¢

Reference(s) | M Di(}) Ki(1) Ka(1) e({)
Existential | O(N) o(1) O(N) o(M) 0.01




An Abridged History of Vertex Expanders

D,-regular G = ([N] Ll [M], E) with max expanding set size K; and K and factor ¢

Reference(s) | M D) KM KM =)
Existential O(N) 0(1) O(N) Oo(M) 0.01
CRVW'02;

CRT23: Gor23 | W) o(1) O(N) 2 0.01



An Abridged History of Vertex Expanders

D,-regular G = ([N] Ll [M], E) with max expanding set size K; and K and factor ¢

Reference(s) | M D) KM KM =)
Existential O(N) 0(1) O(N) Oo(M) 0.01
CRVW'02;

CRT23: G023 | OM) o(1) O(N) @ 0.01
HLMRZ'25 O(N) o(1) O(N) o(m) 0.01




An Abridged History of Vertex Expanders

D,-regular G = ([N] Ll [M], E) with max expanding set size K; and K and factor ¢
Reference(s) | M D.({) K.(1) Ka(1) e(})
Existential O(N) 0(1) O(N) Oo(M) 0.01
CRVW'02;

CRT'23: Gor23 | O 0(1) O(N) @ 0.01
HLMRZ'25 O(N) o(1) O(N o(M) 0.01
Existential O(N%)  O(log(N))  O(NO-%9) o(M) 0.01




An Abridged History of Vertex Expanders

D,-regular G = ([N] Ll [M], E) with max expanding set size K; and K and factor ¢
Reference(s) | M D.({) Ka(1) e(})
Existential O(N) 0(1) Oo(M) 0.01
CRVW'02;

CRT'23; Gol'23 | OW) o) N 2 0.01
HLMRZ'25 O(N) o(1) o(M) 0.01
Existential O(N®)  O(log(N)) o(M) 0.01
TUZ'01 O(N?)  20((oglogh)® %) 0.01




An Abridged History of Vertex Expanders

D,-regular G = ([N] Ll [M], E) with max expanding set size K; and K and factor ¢

Reference(s) | M D) KM KM =)
Existential O(N) 0(1) O(N) Oo(M) 0.01
CRVW'02;

CRT23: G023 | OM) o(1) O(N) @ 0.01
HLMRZ'25 O(N) o(1) O(N) o(m) 0.01

Existential O(N%)  O(log(N))  O(NO-%9) o(M) 0.01
TUZ'01 O(N?)  20(Uoglog)) (7099 %) 0.01
TU06 O(N?)  20((loglogM)™h) (7099 %) 0.01




An Abridged History of Vertex Expanders

D,-regular G = ([N] Ll [M], E) with max expanding set size K; and K and factor ¢

Reference(s) | M D.(1) Ki(1) Ka(T) e(l)
Existential O(N) 0(1) O(N) Oo(M) 0.01
CRVW'02;

CRT'23: Gol'23 O(N) o(1) O(N) %) 0.01
HLMRZ'25 O(N) 0(1) Oo(N O(M) 0.01
Existential O(N%)  O(log(N))  O(NO-%9) o(M) 0.01
TUZ'01 O(N?)  20(Uoglog)) (7099 %) 0.01
TU06 O(N?)  20((loglogM)™h) (7099 %) 0.01
GUV'09,KT'22 | O(N°)  polylog(N)  O(N9) 7 0.01



An Abridged History of Vertex Expanders

D,-regular G = ([N] Ll [M], E) with max expanding set size K; and K and factor ¢

Reference(s) | M D.(1) Ki(1) Ka(T) e(l)
Existential O(N) 0(1) O(N) Oo(M) 0.01
CRVW'02;

CRT'23: Gol'23 O(N) o(1) O(N) %) 0.01
HLMRZ'25 O(N) 0(1) O(N) o(M) 0.01
Existential O(N%)  O(log(N))  O(NO-%9) o(M) 0.01
TUZ'01 O(N?)  20(Uoglog)) (7099 %) 0.01
TU06 O(N?)  20((loglogM)™h) (7099 %) 0.01
GUV'09,KT'22 | O(N°)  polylog(N)  O(N9) 7 0.01
Us (on KT'22) | O(N°)  polylog(N)  O(N*%) O(min(M, &)) 0.01




Part 1: Two-Sided Lossless Expanders in
the Unbalanced Setting [CGRZ’24]
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Main Results
Theorem (CGRZ’24)

The KT graph is a right lossless expander. l.e., for infinitely many N and all
constant 0 < § < 0.99, there exists an explicit (D,, Dg)-biregular two-sided
(Ki,e. = 0.01,Kg, ep = 0.01)-lossless expander where

e D, = polylog(N) e Ifd < %, then Kz = O <D_,VLI>

° M=~ N

® K, = N9 (from KT'22)

© If6 >}, then ks =0 (1)

Remark

When M < /N, have that Kz = O(M/D,) is optimal. Otherwise since ND, = MDg,
for a subset |Sz| = w(M/D,) we would have |I'(Sg)| = w(M/D,) - Dp = w(N).



Main Results
Theorem (CGRZ’24)

The KT graph is a right lossless expander. l.e., for infinitely many N and all
constant 0 < § < 0.99, there exists an explicit (D,, Dg)-biregular two-sided
(Ki,e. = 0.01,Kg, ep = 0.01)-lossless expander where

e D, = polylog(N) o If6 <1 thenky=0 (D—’VL’>
° M=~ N

® K, = N9 (from KT'22)

N
VD,

® If6 >4, then Ky = O (7%

Theorem (CGRZ’24)

When M > /N, our construction cannot achieve K larger than O (MLDL)
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Construction of the KT Graph

Notation

For n € N and a prime power g, define
¢ Polynomials of deg < n: P, = {f € Fy[x] | deg(f) < n}

e Iterated derivative: f)(x) = %,f(x) € Fqlx]
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Construction of the KT Graph

Givenn,s,q € Nsuch that s = onfor d < 1 and prime g > n, construct:
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Construction of the KT Graph
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Construction of the KT Graph

Givenn,s,q € Nsuch that s = onfor d < 1 and prime g > n, construct:

OO

OO00O

Q
O
Q
@)
O oY __
©)
O
)
@)




Part 1 Outline
* Mainresults
® Construction-oftheKTgraph
® Right to left expansion
® Tightness
® Open Questions



Right to Left Expansion



Right to Left Expansion

Theorem

Ifn > s+ 1, then G is a right (Kg, £g)-lossless expander with Kz = vg*™ and
eq = 7y - qUax(25+2-n.0) where ~ s arbitrary.




Right to Left Expansion

Theorem

Ifn > s+ 1, then G is a right (K, cg)-lossless expander with Kz = vg**! and
eq = 7y - qUax(25+2-n.0) where ~ s arbitrary.

n>2s+2

v =0.01



Right to Left Expansion

Theorem

Ifn > s+ 1, then G is a right (K, cg)-lossless expander with Kz = vg**! and
eq = 7y - qUax(25+2-n.0) where ~ s arbitrary.

n>2s+2

v =0.01
Ep = 0.01



Right to Left Expansion

Theorem

Ifn > s+ 1, then G is a right (K, cg)-lossless expander with Kz = vg**! and
eq = 7y - qUax(25+2-n.0) where ~ s arbitrary.

n>2s+ 2
v =0.01
5320.01

M

Ka=0.01-g°'=0( —
R q <DL)



Right to Left Expansion

Theorem

Ifn > s+ 1, then G is a right (K, cg)-lossless expander with Kz = vg**! and
eq = 7y - qUax(25+2-n.0) where ~ s arbitrary.

n>2s+ 2 n<2s+2
v =0.01
5320.01

M

Ka=0.01-g°'=0( —
R q <DL)



Right to Left Expansion

Theorem

Ifn > s+ 1, then G is a right (K, cg)-lossless expander with Kz = vg**! and
eq = 7y - qUax(25+2-n.0) where ~ s arbitrary.

n>2s+ 2 n<2s+2
V= 0.01 = 0.01 - qn—(23+2)
Ep = 0.01

M

Ka=0.01-g°'=0( —
R q <DL)



Right to Left Expansion

Theorem

Ifn > s+ 1, then G is a right (K, cg)-lossless expander with Kz = vg**! and
eq = 7y - qUax(25+2-n.0) where ~ s arbitrary.

n>2s+ 2 n<2s+2
V= 0.01 = 0.01 - qn—(23+2)
ep = 0.01 ep = 0.01

M

Ka=0.01-g°'=0( —
R q <DL)



Right to Left Expansion

Theorem

Ifn > s+ 1, then G is a right (K, cg)-lossless expander with Kz = vg**! and
eq = 7y - qUax(25+2-n.0) where ~ s arbitrary.

n>2s+2 n<2s+2
V= 0.01 = 0.01 - qn—(23+2)
5320.01 EH:0.0l
Ks = 0.01 - qsJrl -0 (DM) Kz = 0.01 - q”—(2s+2)q3+1
L

~(n)



Right to Left Expansion

Theorem

Ifn > s+ 1, then G is a right (K, cg)-lossless expander with Kz = vg**! and
eq = 7y - qUax(25+2-n.0) where ~ s arbitrary.

n>2s+2 n<2s+2
V= 0.01 = 0.01 - qn—(23+2)
5320.01 EH:0.0l
Ks = 0.01 - qsJrl -0 (DM) Kz = 0.01 - q”—(2s+2)q3+1
L

~(n)



Right to Left Expansion

Theorem

Ifn > s+ 1, then G is a right (Kg, £g)-lossless expander with Kz = vg*™ and
eq = 7y - qUax(25+2-n.0) where ~ s arbitrary.




Right to Left Expansion

Theorem

Ifn > s+ 1, then G is a right (Kg, £g)-lossless expander with Kz = vg*™ and
eq = 7y - qUax(25+2-n.0) where ~ s arbitrary.

Lemma

The KT graph G is right-regular with degree Dg = q"~(*1).



Right to Left Expansion

Theorem

Ifn > s+ 1, then G is aright (Kg, £g)-lossless expander with Ky = vg°*! and
ep = 7 - qPx(25+2-n0) where ~ is arbitrary.

Lemma
The KT graph G is right-regular with degree Dg = q"~(5*1),

Lemma

For any pair of right vertices w € Biand w' € B, fori # j:

qn—(25+2) n>2s+2
1 n<2s+2

IF(w) NI (W)] < {



Right to Left Expansion
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Right to Left Expansion
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Right to Left Expansion
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Right to Left Expansion

Theorem

Ifn > s+ 1, then G is a right (Kg, £g)-lossless expander with Kz = vg*™ and
eq = 7y - qUax(25+2-n.0) where ~ s arbitrary.

® Assume TCR= IE‘;”, |T| = Kg is evenly spread among q buckets.
¢ Use two levels of inclusion-exclusion to bound left neighborhood.
e First level given by Dg - |T|.

Bound on second level given by left overlap lemma.
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® Given data: m evaluation points yi, ..., ym € Fg and s + 1 derivatives
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There exists a unique f € P s41) Satisfying the requirements.



Hermite Interpolation

® Given data: m evaluation points yi, ..., yn € F; and s + 1 derivatives
{(204,- - -,2s;)}12, @t each point. In total m(s + 1) data points.

* Want to find lowest degree f € Fy[x] such that f)(y;) = z; for
i€d{0,...,s}andj e [m].

Theorem (Hermite ineterpolation)

There exists a unique f € P s41) Satisfying the requirements.

Theorem (Generalized Hermite interpolation)

Forn > m(s+ 1), there exist exactly g"~™(s+1) satisfactory polynomials in P_,,.
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Right-Regularity

The KT graph G is right-regular with degree Dy = q"~ (1.

Immediate by Hermite interpolation
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Lemma
For any w, € B, and wy € By, have that |I'(w;) N T (wy)| < gnax((n=(2s+2).0),

Proof

® Define vy, , : Fg — F2°t2 as 1y, 4, () = vy, (f) 0 ¥y, (), so it’s Fg-linear.
® Forw; = (y1,z1) and wy = (y2,25) where y1,y» € Fyand 21,2, € Fg*l, we
have |T'(wy) NT(w)| = |y,}, (21, 22)|-
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Lemma
For any w, € B, and wy € By, have that |I'(w;) N T (wy)| < gnax((n=(2s+2).0),

Proof.

® Define vy, , : Fg — F2°t2 as 1y, 4, () = vy, (f) 0 ¥y, (), so it’s Fg-linear.

® Forw; = (y1,z1) and wy = (y2,25) where y1,y» € Fyand 21,2, € IF;“, we
have |T'(wy) NT(w)| = |y,}, (21, 22)|-

® Whenn > 2s + 2, Hermite interpolation implies |4}, (z1,2,)| = g"~(**2),




Left Neighborhood Overlap

Lemma
For any w, € B, and wy € By, have that |I'(w;) N T (wy)| < gnax((n=(2s+2).0),

|
=

Proof

® Define vy, , : Fg — F2°t2 as 1y, 4, () = vy, (f) 0 ¥y, (), so it’s Fg-linear.

® Forw; = (y1,z1) and wy = (y2,25) where y1,y» € Fyand 21,2, € Fg*l, we
have |T'(wy) NT(w)| = |y,}, (21, 22)|-

® When n < 2s + 2, Hermite interpolation implies ‘¢yj}y2(zl,zg)| <1.
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Tightness

Remark

When M < v/N, the max size of right sets K; = O(M/D,) that can expand
losslessly is optimal.



Tightness

Theorem
When M > /N, the KT graph cannot achieve Ky larger than O %) That is,
whens + 1 < n < 2s + 2, the tradeoff Kg = ez - g"~*V js optimal.

Z~
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Fors+1<n<2s+2and0 < v <2, there exists T C R such that
[T =vq"~ ™Y =Kz and |T(T)| = (1 — 1) Dg|T].
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Tightness

Theorem

Fors+1<n<2s+2and0 < v < 2, there exists T C R such that
7| = vg"~C*) = Ky and |T(T)| = (1 — 1) Dg|T.

Lemma (Can achieve worst left overlap)
Letyi,ys € Fq such that y, # y». Then there exist T, C B,, and T, C B, such
that|T1| = |T2| = % and|F(T1) ﬂF(T2)| = |T1| o |T2|

Proof.
Let T = T; U Ty and use inclusion-exclusion to compute

(7| = Da- (ITil + ITal) = ITal - 172l = (1= 7 ) a7



Constructing Worst-Case Right Sets

Lemma (Can achieve worst left overlap)

Lety,,y, € Fq such thaty # y'. Then there exist T, C B,, and T, C B, such
That|T1| = |T2| = % and|F(T1) ﬂP(T2)| = |T1| o |T2|
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Constructing Worst-Case Right Sets

Lemma (Can achieve worst left overlap)

Lety,,y, € Fq such thaty # y'. Then there exist T, C B,, and T, C B, such
Thai'|T1| = |T2| = % and|F(T1) ﬂP(T2)| = |T1| o ’T2|

To construct such Ty, T», suffices to construct S;, Sy C IE*‘;+1 with
|81’ = |82| = % such that 81 X 82 Q ¢y1,y2 <P<n) by Iettlng T1 = {<y1731>}51631
and Ty = {(y2, S2) }s,es,-



Constructing Worst-Case Right Sets

Construct 81,8, C F5™ with || = |S,| = %2 such that §; x S, C 4y, , (P<p).
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Goal
Construct 81,8, C FS™ with |Si| = [S;| = % such that §; x Sy C 1y, , (P<p).

s+1
Fq

¢Y1 22 (P<n)
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Constructing Worst-Case Right Sets

Goal
Construct 81,8, C FS™ with || = [S,| = % such that §; x S, C 1y, , (P<p).

s+1
]FCI

Sy
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Goal
Construct 81,8, C FS™ with || = [S,| = % such that §; x S, C 1y, , (P<p).

s+1
]FCI

Sy




Constructing Worst-Case Right Sets

Construct S, 8, € FS™ with [S;| = |S,| = % such that §; x S, C ¥y, 4, (P<n).

Lemma

Fors+1 < n < 2s-+ 2, we have

YiwPd) = |J {Wn(D,9(f+0(h) | f€Pesin},

hepnf(s+1)

where o : P,_(s41) — P<s41 IS an injective homomorphism.



Constructing Worst-Case Right Sets

Construct 81,8, C FS™ with || = [S,| = % such that §; x S, C 1y, , (P<p).

s+1
IE“CI

wh 2 (P<n)

s+1
Fq



Constructing Worst-Case Right Sets

Goal
Construct 81,8, C FS™ with || = [S,| = % such that §; x S, C 1y, , (P<p).

.

82 w)ﬁ Y2 (P<n)

s+1
Fq

Sl Fg—l—l



Constructing Worst-Case Right Sets

Lemma (Can achieve worst left overlap)

Lety,,y, € Fq such thaty # y'. Then there exist T, C B,, and T, C B, such
That|T1| = |T2| = % and|F(T1) ﬂP(T2)| = |T1| o |T2|

Theorem
When M > /N, the KT graph cannot achieve Kg larger than O (MLDL) That is,
whens+1 < n < 2s + 2, the tradeoff Ky = 5 - "~V js optimal.
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Reference(s) | M D/ (1) K (1) Ka(1) e(})
Existential O(N) 0(1) O(N) Oo(M) 0.01
HLMRZ'25 o)  o(1) o) o(M) 0.01
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Us (on KT'22) | O(N°) polylog(N) O(N*?) O(min(M,4))  0.01




Open Questions

Reference(s) | M D.({) K.(1) Ka(?1) e(l)
Existential O(N) 0(1) O(N) Oo(M) 0.01
HLMRZ'25 O(N) 0(1) O(N) o(M) 0.01
Existential O(N%)  O(log(N))  O(N°99) o(M) 0.01
Us (on KT'22) | O(N°) polylog(N) O(N*?) O(min(M,4))  0.01
Existential o(N) o(1) O(N) o(M) 0(1/D,)




Open Questions

Reference(s) | M D/ (1) K (1) Ka(1) e(})
Existential O(N) 0(1) O(N) Oo(M) 0.01
HLMRZ'25 O(N) 0(1) O(N) o(M) 0.01
Existential O(N%)  O(log(N))  O(NO-% o(M) 0.01
Us (on KT'22) | O(N°) polylog(N) O(N*?) O(min(M,4))  0.01
Existential O(N) 0(1) O(N) O(M) (1/Dy)
Existential | O(N®)  O(1)  O(N-3) o(m) 0.01




Open Questions

® When M > /N, improve our K5 to O(M/D,) with different constructions?
e Explicitly construct balanced ultra-lossless expanders withe = O(1/D,)?

e Explicitly construct unbalanced expanders with D, = O(1) for
KL = O(NOS(S)?



Open Questions

® When M > /N, improve our K5 to O(M/D,) with different constructions?
e Explicitly construct balanced ultra-lossless expanders withe = O(1/D,)?

e Explicitly construct unbalanced expanders with D, = O(1) for
KL = O(NOS(S)?

® The KT graph is based on multiplicity codes while the GUV graph is based
on Parvaresh-Vardy codes since they have good list-recoverability.
Recent work [ Chen, Zhang’25 ] gives better bounds on
list-recoverability for folded RS codes. Use to build better condensers?



Part 2: Other Projects & Future Directions




Vertex Expanders

Bipartite Vertex Expander

® A (D,,Dg)-biregular graph G = (L LR, E) is a one-sided (K, ¢, )-lossless
expander if forall S C L s.t. |S| <K, then |[I'(S)| > (1 —¢,) - D, - |S|.

® Gisatwo-sided (K., e, Kz, cp)-lossless expander if, moreover, for all
SCRst. |S| <Kpthen|T'(S)| > (1 —¢g)-Dg-|3|.

With N = |L| and M = |R

, we can view G instead as its neighborhood function:

I':[N] x [D] — [M]



Vertex Expanders

Bipartite Vertex Expander

® A (D,,Dg)-biregular graph G = (L LR, E) is a one-sided (K, ¢, )-lossless
expander if forall S C L s.t. |S| <K, then |[I'(S)| > (1 —¢,) - D, - |S|.

® Gisatwo-sided (K., e, Kz, cp)-lossless expander if, moreover, for all
SCRs.t. |S| <Kgthen|I'(S)| > (1 —cg) -Dg - |S|.

With n = log |L|, m = log|R
neighborhood function:

,and d = logD,, we can view G instead as its

I:{0,1}" x {0,1}¢ = {0,1}"



It Was Condensers All Along!




Seeded Condensers

Weak source (43 / 100) Seed (5/5)
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Condenser

Strong source (48 / 50)



Seeded Condensers

Expanders give condensers

If G is a one-sided (K,, ¢)-expander, then T is a lossless condenser for
sources with min-entropy at most k and its output e-close in TV distance to
a source with min-entropy at least k + d.



What If You Don’t Have Access to a Seed?

Weak source (60 / 100)

Condenser

Strong source (48 / 50)



What If You Don’t Have Access to a Seed?

NO!



What If You Don’t Have Access to a Seed?

NO!

Solution: Distributions must be
structured.



oNOSFs



oNOSFs
Online Non-Oblivious Symbol Fixing Sources (oNOSFs)

¢ / blocks each of length n.

® guniform “good” blocks, and ¢ — g “bad” blocks that are arbitrary
functions the of good blocks that appear before them.




oNOSFs

Theorem (CGR, FOCS’'24)

1
Le/g])”

* Can condense (g, ()-oNOSFs to rate ;- when n > 2.

® Can’t condense (g, {)-oNOSFs beyond rate
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Theorem (CGR, FOCS’'24)

® Can’t condense (g, {)-oNOSFs beyond rate —;,— /sl /gJ

o)

® Can condense (g, {)-oNOSFs to rat

Le/ gl

‘

Theorem (CGRS’25)

® Construct explicit condensers as above When n > 2w,

Show there exist condensers up to rate when n = O(1) (large).

W ]
Convert leader election protocols into extractors for oNOSFs.

® Construct protocols to extract from oNOSFs withg > ¢ — O({/ log" ¢).
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® Upper bound on # of people needed to bias a coin flipping protocol.
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® Smaller upper bound on # of people needed to bias a protocol.



New coin flipping protocol bounds

Theorem (RSZ'02)

® Upper bound on # of people needed to bias a coin flipping protocol.

Theorem (CGRS’25)

® Smaller upper bound on # of people needed to bias a protocol.

® Construct explicit protocol that handles more adversaries than
previously possible.



Open Questions
oNOSFs:

1. Find explicit constructions for oNOSFs with constant block length.



Open Questions
oNOSFs:

1. Find explicit constructions for oNOSFs with constant block length.

2. Determine possibility of condensing from oNOBFs (oNOSFs with block
length 1).



Open Questions
oNOSFs:

1. Find explicit constructions for oNOSFs with constant block length.

2. Determine possibility of condensing from oNOBFs (oNOSFs with block
length 1).

Coin flipping protocols



Open Questions
oNOSFs:

1. Find explicit constructions for oNOSFs with constant block length.
2. Determine possibility of condensing from oNOBFs (oNOSFs with block
length 1).
Coin flipping protocols
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truth?



Open Questions
oNOSFs:

1. Find explicit constructions for oNOSFs with constant block length.
2. Determine possibility of condensing from oNOBFs (oNOSFs with block
length 1).
Coin flipping protocols

1. There's a gap between the number of adversaries our explicit protocol
can handle and how many we know can bias any protocol. What'’s the
truth?

2. (Dis)prove: For f: {0,1}* — {0,1}™, there exist b = O( > bad players
that can simultaneously bias 0.01m of the output coordlnates



Thank you!

« Committee
* Family

* Friends
 Office mates
* Cornell TCS
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Coin flipping protocols
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Coin flipping protocols

e /players U'JJ'J

® b adversarial ~ DPI YY)

® n bits each

® rrounds

e Common
channel

® No crypto

® | eader
election —
coin flipping
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Leader election protocol

® A leader election protocol 7 is a function on ¢ players each with n bits
that lasts r rounds and chooses a player at the end of the r rounds.

e risresilient to b = b({) bad players (arbitrary functions of good players
in the current and past rounds) if a good player is chosen w.p. Q(1).
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A coin flipping protocol instead outputs a value in {0, 1}. Resilient to b bad
players if both {0, 1} occur w.p. Q(1).



Protocols
Leader election protocol

® A leader election protocol 7 is a function on ¢ players each with n bits
that lasts r rounds and chooses a player at the end of the r rounds.

e risresilient to b = b({) bad players (arbitrary functions of good players
in the current and past rounds) if a good player is chosen w.p. Q(1).

Coin flipping protocol

A coin flipping protocol instead outputs a value in {0, 1}. Resilient to b bad
players if both {0, 1} occur w.p. Q(1).

By adding one more round, can convert leader election to coin flipping.



New coin flipping protocol bounds
Theorem (RSZ'02)

® Any r-round coin flipping protocol with n = 1 bit per round can be

biased by O (bé%) players.

V(o)
* To handle b = ©(() bad players, need r > 3 log*(£) — log™ log* (£).

Theorem (CGRS’25)

® Any r-round protocl/ with n = 1 biased by O (W) players.
e To handle b = ©(¢) bad players, need r > log*(£) — O(1).

® Forr > 2, exists explicit protocol that can handle b = O <m>.
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GUV and KT

Do other list-recoverable codes give expanders with better parameters?



GUV and KT

The KT graph is constructed based on multiplicity codes.

L:]ngp<n R:F3+2
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GUV and KT

The GUV graph is constructed based on Parvaresh-Vardy codes.

L:]ngp<n R:IFZ+2

(Vg5 fCO<YQ)7 fCI(Yq)a R fCS(Yq))

§78 fCO(J/q)v ! Va)s-- fcs(ycl))
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