
Noam Ringach, 5/2/25

Expanders, Extractors, Condensers
and Other Mysteries



Randomness in Computation

• Randomized algorithms are everywhere!
• Many use randomness to sample a random object (e.g., graph, function,

etc…) that has a “nice” property with 99% probability.
• BUT perfect randomness doesn’t exist in the real world!
• Can get around this by explicitly constructing objects that look

“pseudorandom” and have these nice properties.
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Pseudorandomness
Existence
Show that a random object (e.g., graphs, functions, …) has very nice
properties via the probabilistic method (usually easy).
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Existence
Show that a random object (e.g., graphs, functions, …) has very nice
properties via the probabilistic method (usually easy).

Explicit construction

Explicitly (in polynomial time) construct a deterministic object with those
properties (HARD).



Part 0: Introduction to Expanders



Types of Expanders
Goal
Have similar connectivity to a complete graph while having low degree
(sparse).
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=≠==⇒



Types of Expanders

Spectral

Random walks mix
well. Adjacency
matrix has λ2 ≤
2
√
D− 1

Edge

Large fraction of
edges from a set
leave the set.

Cheeger⇐====⇒

Vertex

Small sets have
almost as many
neighbors as pos-
sible.

Kahale
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Vertex Expanders
Vertex Expander

• A D-regular graph G = (V, E) is a (K, ε)-expander if for every set S ⊆ V of
size at most K, the neighborhood Γ(S) has size at least (1− ε) · D · |S|.

• When ε ≈ 0.01, we call G a lossless expander.
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Vertex Expanders
Vertex Expander

• A D-regular graph G = (V, E) is a (K, ε)-expander if for every set S ⊆ V of
size at most K, the neighborhood Γ(S) has size at least (1− ε) · D · |S|.

• When ε ≈ 0.01, we call G a lossless expander.

Theorem (Kahale’95)

There exist Ramanujan graphs (optimal spectral expanders) that are only
(K = Ω(|V|), ε > 1/2)-vertex expanders.
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Vertex Expanders
Bipartite Vertex Expander

• A (DL, DR)-biregular graph G = (L ⊔ R, E) is a one-sided (KL, εL)-lossless
expander if for all S ⊆ L s.t. |S| ≤ KL then |Γ(S)| ≥ (1− εL) · DL · |S|.

• G is a two-sided (KL, εL, KR, εR)-lossless expander if, moreover, for all
S ⊆ R s.t. |S| ≤ KR then |Γ(S)| ≥ (1− εR) · DR · |S|.
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Bipartite Vertex Expander
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S ⊆ R s.t. |S| ≤ KR then |Γ(S)| ≥ (1− εR) · DR · |S|.

With N = |L| and M = |R|, we can view G instead as its neighborhood function:

Γ : [N]× [DL] → [M]
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Bipartite Vertex Expanders are Useful
Unbalanced

• Condenser and extractor constructions [ Ta-Shma, Umans,
Zuckerman’01;Ta-Shma, Umans’06; Guruswami, Umans, Vadhan’09; Dvir,
Kopparty, Saraf, Sudan’13 ]

• Derandomization [ Doron, Tell’23 ]
• Probabilistic data structures [ Upfal, Wigderson’87; Buhrman, Miltersen,

Radhakrishnan, Venkatesh’02 ]
• Complexity lower bounds [ Ben-Sasson, Wigderson’01; …; Alekhnovich,

Ben-Sasson, Razborov, Wigderson’04 ]



Bipartite Vertex Expanders are Useful
Balanced

• Classical codes [ Sipser, Spielman’96; Luby, Mitzenmacher, Shokrollahi,
Spielman’01; Tanner’03 ]

• Quantum codes* [ Lin, Hsieh’22 ]
• Distributed routing algorithms* [ Pele, Upfal’89; …; Hoory, Magen,

Pitassi’06 ]
*Uses two-sided expansion



An Abridged History of Vertex Expanders
DL-regular G = ([N]⊔ [M], E) with max expanding set size KL and KR and factor ε

Reference(s) M DL(↓) KL(↑) KR(↑) ε(↓)

Existential O(N) O(1) O(N) O(M) 0.01
CRVW’02;
CRT’23; Gol’23

O(N) O(1) O(N) ∅ 0.01

HLMRZ’25 O(N) O(1) O(N) O(M) 0.01
Existential O(Nδ) O(log(N)) O(N0.9δ) O(M) 0.01

TUZ’01 O(Nδ) 2O((log logN)2) O(N0.9δ) ∅ 0.01

TU’06 O(Nδ) 2O((log logN)1.01) O(N0.9δ) ∅ 0.01
GUV’09, KT’22 O(Nδ) polylog(N) O(N0.9δ) ∅ 0.01
Us (on KT’22 ) O(Nδ) polylog(N) O(N0.9δ) O(min(M, N

M)) 0.01
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Part 1: Two-Sided Lossless Expanders in
the Unbalanced Setting [CGRZ’24]



Part 1 Outline
• Main results
• Construction of the KT graph
• Right to left expansion
• Tightness
• Open Questions



Main Results
Theorem (CGRZ’24)

The KT graph is a right lossless expander. I.e., for infinitely many N and all
constant 0 < δ < 0.99, there exists an explicit (DL, DR)-biregular two-sided
(KL, εL = 0.01, KR, εR = 0.01)-lossless expander where

• DL = polylog(N)
• M ≈ Nδ

• KL = N0.99δ (from KT’22 )

• If δ ≤ 1
2
, then KR = O

(
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• If δ > 1
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Remark
WhenM ≤

√
N, have that KR = O(M/DL) is optimal. Otherwise since NDL = MDR,

for a subset |SR| = ω(M/DL) we would have |Γ(SR)| = ω(M/DL) · DR = ω(N).
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Theorem (CGRZ’24)

When M >
√
N, our construction cannot achieve KR larger than O

(
N

MDL

)
.
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Construction of the KT Graph
Notation
For n ∈ N and a prime power q, define

• Polynomials of deg< n: P<n = {f ∈ Fq[x] | deg(f) < n}
• Iterated derivative: f(i)(x) = di

dxi f(x) ∈ Fq[x]



Construction of the KT Graph
Given n, s,q ∈ N such that s = δn for δ < 1 and prime q > n, construct:

L = Fn
q = P<n R = Fs+2

q

f

y1
(y1, f(0)(y1), f(1)(y1), . . . , f(s)(y1))

yq

...q

(yq, f(0)(yq), f(1)(yq), . . . , f(s)(yq))

(y1, ψy1(f))

(yq, ψyq(f))

B1 = {(y1, . . . ), . . . }
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Theorem
If n ≥ s+ 1, then G is a right (KR, εR)-lossless expander with KR = γqs+1 and
εR = γ · qmax(2s+2−n,0) where γ is arbitrary.

Lemma
The KT graph G is right-regular with degree DR = qn−(s+1).

Lemma
For any pair of right vertices w ∈ Bi and w′ ∈ Bj for i ̸= j:

|Γ(w) ∩ Γ(w′)| ≤

{
qn−(2s+2) n ≥ 2s+ 2

1 n ≤ 2s+ 2
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Problem

• Given data: m evaluation points y1, . . . , ym ∈ Fq and s+ 1 derivatives
{(z0,j, . . . , zs,j)}mj=1 at each point. In totalm(s+ 1) data points.

• Want to find lowest degree f ∈ Fq[x] such that f(i)(yj) = zi,j for
i ∈ {0, . . . , s} and j ∈ [m].

Theorem (Hermite ineterpolation)

There exists a unique f ∈ P<m(s+1) satisfying the requirements.

Theorem (Generalized Hermite interpolation)

For n ≥ m(s+1), there exist exactly qn−m(s+1) satisfactory polynomials in P<n.
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Proof.
Immediate by Hermite interpolation
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Tightness
Remark
When M ≤

√
N, the max size of right sets KR = O(M/DL) that can expand

losslessly is optimal.



Tightness
Theorem
When M >

√
N, the KT graph cannot achieve KR larger than O

(
N

MDL

)
. That is,

when s+ 1 < n < 2s+ 2, the tradeoff KR = εR · qn−(s+1) is optimal.
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For s+ 1 < n < 2s+ 2 and 0 < γ ≤ 2, there exists T ⊆ R such that
|T| = γqn−(s+1) = KR and |Γ(T)| =

(
1− γ

4

)
DR |T|.

Lemma (Can achieve worst left overlap)

Let y1, y2 ∈ Fq such that y1 ̸= y2. Then there exist T1 ⊆ By1 and T2 ⊆ By2 such
that |T1| = |T2| = KR

2
and |Γ(T1) ∩ Γ(T2)| = |T1| · |T2|.

Proof.
Let T = T1 ∪ T2 and use inclusion-exclusion to compute

|Γ(T)| = DR · (|T1|+ |T2|)− |T1| · |T2| =
(
1− γ

4

)
DR |T|
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Constructing Worst-Case Right Sets
Lemma (Can achieve worst left overlap)

Let y1, y2 ∈ Fq such that y ̸= y′. Then there exist T1 ⊆ By1 and T2 ⊆ By2 such
that |T1| = |T2| = KR

2
and |Γ(T1) ∩ Γ(T2)| = |T1| · |T2|.

Observation
To construct such T1, T2, suffices to construct S1, S2 ⊆ Fs+1

q with
|S1| = |S2| = KR

2
such that S1 × S2 ⊆ ψy1,y2(P<n) by letting T1 = {(y1, s1)}s1∈S1

and T2 = {(y2, s2)}s2∈S2 .
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2
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Constructing Worst-Case Right Sets
Goal
Construct S1, S2 ⊆ Fs+1

q with |S1| = |S2| = KR
2
such that S1 × S2 ⊆ ψy1,y2(P<n).

Lemma
For s+ 1 < n < 2s+ 2, we have

ψy1,y2(P<d) =
⋃

h∈Pn−(s+1)

{(ψy1(f), ψy2(f+ σ(h))) | f ∈ P<s+1},

where σ : Pn−(s+1) → P<s+1 is an injective homomorphism.
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Constructing Worst-Case Right Sets
Lemma (Can achieve worst left overlap)

Let y1, y2 ∈ Fq such that y ̸= y′. Then there exist T1 ⊆ By1 and T2 ⊆ By2 such
that |T1| = |T2| = KR

2
and |Γ(T1) ∩ Γ(T2)| = |T1| · |T2|.

Theorem
When M >

√
N, the KT graph cannot achieve KR larger than O

(
N

MDL

)
. That is,

when s+ 1 < n < 2s+ 2, the tradeoff KR = εR · qn−(s+1) is optimal.



Part 1 Outline
• Main results
• Construction of the KT graph
• Right to left expansion
• Tightness
• Open Questions
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Open Questions
Reference(s) M DL(↓) KL(↑) KR(↑) ε(↓)
Existential O(N) O(1) O(N) O(M) 0.01
HLMRZ’25 O(N) O(1) O(N) O(M) 0.01
Existential O(Nδ) O(log(N)) O(N0.9δ) O(M) 0.01
Us (on KT’22 ) O(Nδ) polylog(N) O(N0.9δ) O(min(M, N

M)) 0.01

Existential O(N) O(1) O(N) O(M) O(1/DL)
Existential O(Nδ) O(1) O(N0.3δ) O(M) 0.01
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Open Questions
• When M >

√
N, improve our KR to O(M/DL) with different constructions?

• Explicitly construct balanced ultra-lossless expanders with ε = O(1/DL)?
• Explicitly construct unbalanced expanders with DL = O(1) for
KL = O(N0.3δ)?

• The KT graph is based on multiplicity codes while the GUV graph is based
on Parvaresh-Vardy codes since they have good list-recoverability.
Recent work [ Chen, Zhang’25 ] gives better bounds on
list-recoverability for folded RS codes. Use to build better condensers?
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Part 2: Other Projects & Future Directions



Vertex Expanders
Bipartite Vertex Expander

• A (DL, DR)-biregular graph G = (L ⊔ R, E) is a one-sided (KL, εL)-lossless
expander if for all S ⊆ L s.t. |S| ≤ KL then |Γ(S)| ≥ (1− εL) · DL · |S|.

• G is a two-sided (KL, εL, KR, εR)-lossless expander if, moreover, for all
S ⊆ R s.t. |S| ≤ KR then |Γ(S)| ≥ (1− εR) · DR · |S|.

With N = |L| and M = |R|, we can view G instead as its neighborhood function:

Γ : [N]× [DL] → [M]



Vertex Expanders
Bipartite Vertex Expander

• A (DL, DR)-biregular graph G = (L ⊔ R, E) is a one-sided (KL, εL)-lossless
expander if for all S ⊆ L s.t. |S| ≤ KL then |Γ(S)| ≥ (1− εL) · DL · |S|.

• G is a two-sided (KL, εL, KR, εR)-lossless expander if, moreover, for all
S ⊆ R s.t. |S| ≤ KR then |Γ(S)| ≥ (1− εR) · DR · |S|.

With n = log |L|,m = log |R|, and d = logDL, we can view G instead as its
neighborhood function:

Γ : {0, 1}n × {0, 1}d → {0, 1}m



It Was Condensers All Along!



Seeded Condensers
Weak source (43 / 100) Seed (5/5)

Strong source (48 / 50)

Condenser



Seeded Condensers
Expanders give condensers

If G is a one-sided (KL, ε)-expander, then Γ is a lossless condenser for
sources with min-entropy at most k and its output ε-close in TV distance to
a source with min-entropy at least k+ d.



What If You Don’t Have Access to a Seed?
Weak source (60 / 100)

Strong source (48 / 50)

Condenser

NO!
Solution: Distributions must be

structured.
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Solution: Distributions must be

structured.
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oNOSFs
Online Non-Oblivious Symbol Fixing Sources (oNOSFs)

• ℓ blocks each of length n.
• g uniform “good” blocks, and ℓ− g “bad” blocks that are arbitrary

functions the of good blocks that appear before them.



oNOSFs
Theorem (CGR, FOCS’24)

• Can’t condense (g, ℓ)-oNOSFs beyond rate 1
⌊ℓ/g⌋ .

• Can condense (g, ℓ)-oNOSFs to rate 1
⌊ℓ/g⌋ when n ≥ 2ω(ℓ).
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• Construct explicit condensers as above when n ≥ 2ω(ℓ).
• Show there exist condensers up to rate 1

⌊ℓ/g⌋ when n = O(1) (large).

• Convert leader election protocols into extractors for oNOSFs.
• Construct protocols to extract from oNOSFs with g ≥ ℓ− O(ℓ/ log∗ ℓ).
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oNOSFs:
1. Find explicit constructions for oNOSFs with constant block length.
2. Determine possibility of condensing from oNOBFs (oNOSFs with block

length 1).
Coin flipping protocols

1. There’s a gap between the number of adversaries our explicit protocol
can handle and how many we know can bias any protocol. What’s the
truth?

2. (Dis)prove: For f : {0, 1}ℓ → {0, 1}m, there exist b = O
(

ℓ
log(ℓ)

)
bad players

that can simultaneously bias 0.01m of the output coordinates.
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Thank you!

• Committee


• Family


• Friends


• Office mates


• Cornell TCS
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• b adversarial
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• r rounds
• Common
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• No crypto
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Protocols
Leader election protocol

• A leader election protocol π is a function on ℓ players each with n bits
that lasts r rounds and chooses a player at the end of the r rounds.

• π is resilient to b = b(ℓ) bad players (arbitrary functions of good players
in the current and past rounds) if a good player is chosen w.p. Ω(1).

Coin flipping protocol

A coin flipping protocol instead outputs a value in {0, 1}. Resilient to b bad
players if both {0, 1} occur w.p. Ω(1).

Remark
By adding one more round, can convert leader election to coin flipping.
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Remark
By adding one more round, can convert leader election to coin flipping.



New coin flipping protocol bounds
Theorem (RSZ’02)

• Any r-round coin flipping protocol with n = 1 bit per round can be
biased by O

(
ℓ

log(2r−1)(ℓ)

)
players.

• To handle b = Θ(ℓ) bad players, need r ≥ 1
2

log∗(ℓ) − log∗ log∗(ℓ).

Theorem (CGRS’25)

• Any r-round protocl with n = 1 biased by O
(

ℓ

log(r)(ℓ)

)
players.

• To handle b = Θ(ℓ) bad players, need r ≥ log∗(ℓ) − O(1).

• For r ≥ 2, exists explicit protocol that can handle b = O
(

ℓ

log(ℓ)(log(r)(ℓ))2

)
.
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GUV and KT
Do other list-recoverable codes give expanders with better parameters?



GUV and KT
The KT graph is constructed based on multiplicity codes.

L = Fn
q = P<n R = Fs+2

q

f

y1

yq

...q

(y1, f(0)(y1), f(1)(y1), . . . , f(s)(y1))

(yq, f(0)(yq), f(1)(yq), . . . , f(s)(yq))



GUV and KT
The GUV graph is constructed based on Parvaresh-Vardy codes.

L = Fn
q = P<n R = Fs+2

q

f

y1

yq

...q

(yq, fc
0
(yq), fc

1
(yq), . . . , fc

s
(yq))

(yq, fc
0
(yq), fc

1
(yq), . . . , fc

s
(yq))
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