Expanders, Extractors, Condensers

and Other Mysteries

Noam Ringach, 5/2/25

• Randomized algorithms are everywhere!

- Randomized algorithms are everywhere!
- Many use randomness to sample a random object (e.g., graph, function, etc...) that has a "nice" property with 99% probability.

- Randomized algorithms are everywhere!
- Many use randomness to sample a random object (e.g., graph, function, etc...) that has a "nice" property with 99% probability.
- BUT perfect randomness doesn't exist in the real world!

- Randomized algorithms are everywhere!
- Many use randomness to sample a random object (e.g., graph, function, etc...) that has a "nice" property with 99% probability.
- **BUT** perfect randomness doesn't exist in the real world!
- Can get around this by explicitly constructing objects that look "pseudorandom" and have these nice properties.

Pseudorandomness

Pseudorandomness

Existence

Show that a random object (e.g., graphs, functions, ...) has very nice properties via the probabilistic method (usually easy).

Pseudorandomness

Existence

Show that a random object (e.g., graphs, functions, ...) has very nice properties via the probabilistic method (usually easy).

Explicit construction

Explicitly (in polynomial time) construct a deterministic object with those properties (HARD).

Part 0: Introduction to Expanders

Goal

Have similar connectivity to a complete graph while having low degree (sparse).

Spectral

Random walks mix well. Adjacency matrix has $\lambda_2 \leq 2\sqrt{D-1}$

Edge Spectral

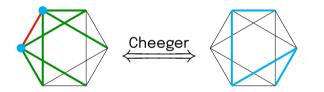
Large fraction of edges from a set leave the set. Random walks mix well. Adjacency matrix has $\lambda_2 \leq 2\sqrt{D-1}$

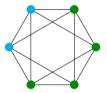
Edge Spectral



Large fraction of edges from a set leave the set. Random walks mix well. Adjacency matrix has $\lambda_2 \leq 2\sqrt{D-1}$

Vertex





Large fraction of edges from a set leave the set. Random walks mix well. Adjacency matrix has $\lambda_2 \leq 2\sqrt{D-1}$ Small sets have almost as many neighbors as possible.



Large fraction of edges from a set leave the set. Random walks mix well. Adjacency matrix has $\lambda_2 \leq 2\sqrt{D-1}$ Small sets have almost as many neighbors as possible.

Vertex Expander

• A *D*-regular graph G = (V, E) is a (K, ε) -expander if for every set $S \subseteq V$ of size at most *K*, the neighborhood $\Gamma(S)$ has size at least $(1 - \varepsilon) \cdot D \cdot |S|$.

- A *D*-regular graph G = (V, E) is a (K, ε) -expander if for every set $S \subseteq V$ of size at most *K*, the neighborhood $\Gamma(S)$ has size at least $(1 \varepsilon) \cdot D \cdot |S|$.
- When $\varepsilon \approx 0.01$, we call G a lossless expander.

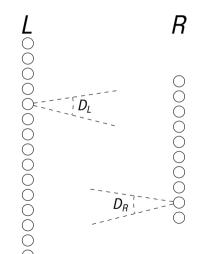
Vertex Expander

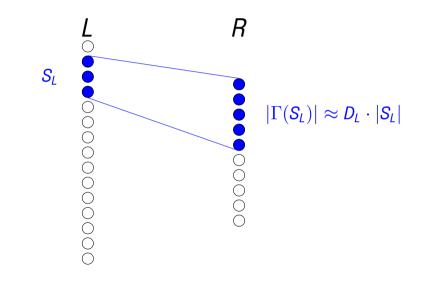
- A *D*-regular graph G = (V, E) is a (K, ε) -expander if for every set $S \subseteq V$ of size at most *K*, the neighborhood $\Gamma(S)$ has size at least $(1 \varepsilon) \cdot D \cdot |S|$.
- When $\varepsilon \approx 0.01$, we call G a lossless expander.

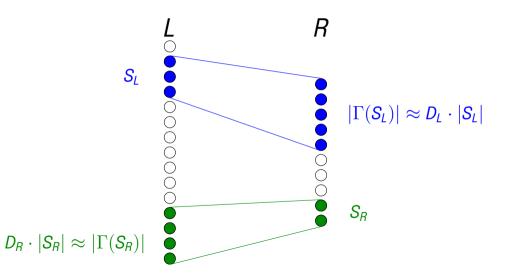
Theorem (Kahale'95)

There exist Ramanujan graphs (optimal spectral expanders) that are only $(K = \Omega(|V|), \varepsilon > 1/2)$ -vertex expanders.

R







Bipartite Vertex Expander

Bipartite Vertex Expander

• A (D_L, D_R) -biregular graph $G = (L \sqcup R, E)$ is a *one-sided* (K_L, ε_L) -lossless expander if for all $S \subseteq L$ s.t. $|S| \leq K_L$ then $|\Gamma(S)| \geq (1 - \varepsilon_L) \cdot D_L \cdot |S|$.

Bipartite Vertex Expander

- A (D_L, D_R) -biregular graph $G = (L \sqcup R, E)$ is a *one-sided* (K_L, ε_L) -lossless expander if for all $S \subseteq L$ s.t. $|S| \leq K_L$ then $|\Gamma(S)| \geq (1 \varepsilon_L) \cdot D_L \cdot |S|$.
- *G* is a *two-sided* $(K_L, \varepsilon_L, K_R, \varepsilon_R)$ -*lossless expander* if, moreover, for all $S \subseteq R$ s.t. $|S| \leq K_R$ then $|\Gamma(S)| \geq (1 \varepsilon_R) \cdot D_R \cdot |S|$.

Bipartite Vertex Expander

- A (D_L, D_R) -biregular graph $G = (L \sqcup R, E)$ is a one-sided (K_L, ε_L) -lossless expander if for all $S \subseteq L$ s.t. $|S| \leq K_L$ then $|\Gamma(S)| \geq (1 \varepsilon_L) \cdot D_L \cdot |S|$.
- *G* is a *two-sided* $(K_L, \varepsilon_L, K_R, \varepsilon_R)$ -*lossless expander* if, moreover, for all $S \subseteq R$ s.t. $|S| \leq K_R$ then $|\Gamma(S)| \geq (1 \varepsilon_R) \cdot D_R \cdot |S|$.

With N = |L| and M = |R|, we can view *G* instead as its neighborhood function:

 $\Gamma: [\mathbf{N}] \times [\mathbf{D}_L] \to [\mathbf{M}]$

Bipartite Vertex Expander

- A (D_L, D_R) -biregular graph $G = (L \sqcup R, E)$ is a *one-sided* (K_L, ε_L) -lossless expander if for all $S \subseteq L$ s.t. $|S| \leq K_L$ then $|\Gamma(S)| \geq (1 \varepsilon_L) \cdot D_L \cdot |S|$.
- *G* is a *two-sided* $(K_L, \varepsilon_L, K_R, \varepsilon_R)$ -*lossless expander* if, moreover, for all $S \subseteq R$ s.t. $|S| \leq K_R$ then $|\Gamma(S)| \geq (1 \varepsilon_R) \cdot D_R \cdot |S|$.

Balanced and Unbalanced Bipartite Expanders

Bipartite Vertex Expander

- A (D_L, D_R) -biregular graph $G = (L \sqcup R, E)$ is a *one-sided* (K_L, ε_L) -lossless expander if for all $S \subseteq L$ s.t. $|S| \leq K_L$ then $|\Gamma(S)| \geq (1 \varepsilon_L) \cdot D_L \cdot |S|$.
- *G* is a *two-sided* $(K_L, \varepsilon_L, K_R, \varepsilon_R)$ -*lossless expander* if, moreover, for all $S \subseteq R$ s.t. $|S| \leq K_R$ then $|\Gamma(S)| \geq (1 \varepsilon_R) \cdot D_R \cdot |S|$.

Balanced and Unbalanced Bipartite Expanders

• If M = O(N), we say G is balanced.

Bipartite Vertex Expander

- A (D_L, D_R) -biregular graph $G = (L \sqcup R, E)$ is a one-sided (K_L, ε_L) -lossless expander if for all $S \subseteq L$ s.t. $|S| \leq K_L$ then $|\Gamma(S)| \geq (1 \varepsilon_L) \cdot D_L \cdot |S|$.
- *G* is a *two-sided* $(K_L, \varepsilon_L, K_R, \varepsilon_R)$ -*lossless expander* if, moreover, for all $S \subseteq R$ s.t. $|S| \leq K_R$ then $|\Gamma(S)| \geq (1 \varepsilon_R) \cdot D_R \cdot |S|$.

Balanced and Unbalanced Bipartite Expanders

- If M = O(N), we say G is balanced.
- If $M = O(N^{\delta})$, for some $0 < \delta < 1$, we say G is unbalanced.

Bipartite Vertex Expanders are Useful

Unbalanced

- Condenser and extractor constructions [Ta-Shma, Umans, Zuckerman'01;Ta-Shma, Umans'06; Guruswami, Umans, Vadhan'09; Dvir, Kopparty, Saraf, Sudan'13]
- Derandomization [Doron, Tell'23]
- Probabilistic data structures [Upfal, Wigderson'87; Buhrman, Miltersen, Radhakrishnan, Venkatesh'02]
- Complexity lower bounds [Ben-Sasson, Wigderson'01; ...; Alekhnovich, Ben-Sasson, Razborov, Wigderson'04]

Bipartite Vertex Expanders are Useful

Balanced

- Classical codes [Sipser, Spielman'96; Luby, Mitzenmacher, Shokrollahi, Spielman'01; Tanner'03]
- Quantum codes* [Lin, Hsieh'22]
- Distributed routing algorithms* [Pele, Upfal'89; ...; Hoory, Magen, Pitassi'06]
- *Uses two-sided expansion

An Abridged History of Vertex Expanders

 D_L -regular $G = ([N] \sqcup [M], E)$ with max expanding set size K_L and K_R and factor ε

$\square D_L(\downarrow) \qquad D_L(\downarrow) \qquad A_L(\downarrow) \qquad A_R(\downarrow) \qquad \varepsilon(\downarrow)$	Reference(s)	М	$D_L(\downarrow)$	$K_L(\uparrow)$	$K_{R}(\uparrow)$	$\varepsilon(\downarrow)$
---	--------------	---	-------------------	-----------------	-------------------	---------------------------

An Abridged History of Vertex Expanders

 D_L -regular $G = ([N] \sqcup [M], E)$ with max expanding set size K_L and K_R and factor ε

Reference(s)	M	$D_L(\downarrow)$	$K_L(\uparrow)$	$K_{R}(\uparrow)$	$\varepsilon(\downarrow)$
Existential	<i>O</i> (<i>N</i>)	O(1)	<i>O</i> (<i>N</i>)	<i>O</i> (<i>M</i>)	0.01

An Abridged History of Vertex Expanders

 D_L -regular $G = ([N] \sqcup [M], E)$ with max expanding set size K_L and K_R and factor ε

Reference(s)	М	$D_L(\downarrow)$	$K_L(\uparrow)$	$K_{R}(\uparrow)$	$\varepsilon(\downarrow)$
Existential	<i>O</i> (<i>N</i>)	O(1)	O(N)	<i>O</i> (<i>M</i>)	0.01
CRVW'02; CRT'23; Gol'23	O (N)	O(1)	O(N)	Ø	0.01

Reference(s)	М	$D_L(\downarrow)$	$K_L(\uparrow)$	$K_{R}(\uparrow)$	$\varepsilon(\downarrow)$
Existential	O (N)	O (1)	<i>O</i> (<i>N</i>)	<i>O</i> (<i>M</i>)	0.01
CRVW'02; CRT'23; Gol'23	O (N)	O(1)	O(N)	Ø	0.01
HLMRZ'25	O (N)	O(1)	O(N)	O (M)	0.01

Reference(s)	М	$D_L(\downarrow)$	$K_L(\uparrow)$	$K_{R}(\uparrow)$	$\varepsilon(\downarrow)$
Existential	<i>O</i> (<i>N</i>)	O (1)	O(N)	<i>O</i> (<i>M</i>)	0.01
CRVW'02; CRT'23; Gol'23	O(N)	O(1)	O(N)	Ø	0.01
HLMRZ'25	O(N)	O(1)	O(N)	O(M)	0.01
Existential	$O(N^{\delta})$	$O(\log(N))$	$\mathcal{O}(\mathcal{N}^{0.9\delta})$	<i>O</i> (<i>M</i>)	0.01

Reference(s)	М	$D_L(\downarrow)$	$K_L(\uparrow)$	$K_{R}(\uparrow)$	$\varepsilon(\downarrow)$
Existential	O (N)	O(1)	O (N)	<i>O</i> (<i>M</i>)	0.01
CRVW'02; CRT'23; Gol'23	O (N)	O(1)	O(N)	Ø	0.01
HLMRZ'25	O(N)	$\mathcal{O}(1)$	O(N)	O(M)	0.01
Existential	$O(N^{\delta})$	$O(\log(N))$	$\mathcal{O}(\mathit{N}^{0.9\delta})$	<i>O</i> (<i>M</i>)	0.01
TUZ'01	$O(N^{\delta})$	$2^{O((\log \log N)^2)}$	$\textit{O}(\textit{N}^{0.9\delta})$	Ø	0.01

Reference(s)	M	$D_L(\downarrow)$	$K_L(\uparrow)$	$K_{R}(\uparrow)$	$\varepsilon(\downarrow)$
Existential	<i>O</i> (<i>N</i>)	O(1)	O (N)	<i>O</i> (<i>M</i>)	0.01
CRVW'02; CRT'23; Gol'23	O(N)	O(1)	O(N)	Ø	0.01
HLMRZ'25	O (N)	$\mathcal{O}(1)$	O(N)	O(M)	0.01
Existential	$O(N^{\delta})$	$O(\log(N))$	$O(N^{0.9\delta})$	O (M)	0.01
TUZ'01	$O(N^{\delta})$	$2^{\mathcal{O}((\log \log N)^2)}$	$\textit{O}(\textit{N}^{0.9\delta})$	Ø	0.01
TU'06	$O(N^{\delta})$	$2^{\textit{O}((\log \log \textit{N})^{1.01})}$	$\mathcal{O}(\mathcal{N}^{0.9\delta})$	Ø	0.01

Reference(s)	М	$D_L(\downarrow)$	$K_L(\uparrow)$	$K_{R}(\uparrow)$	$\varepsilon(\downarrow)$
Existential	<i>O</i> (<i>N</i>)	O(1)	<i>O</i> (<i>N</i>)	<i>O</i> (<i>M</i>)	0.01
CRVW'02;	<i>O</i> (<i>N</i>)	O (1)	O(N)	Ø	0.01
CRT'23; Gol'23	O(N)	O(1)	O(N)	Ø	0.01
HLMRZ'25	O(N)	$\mathcal{O}(1)$	O(N)	O(M)	0.01
Existential	$O(N^{\delta})$	$O(\log(N))$	$O(N^{0.9\delta})$	<i>O</i> (<i>M</i>)	0.01
TUZ'01	$O(N^{\delta})$	$2^{\mathcal{O}((\log \log N)^2)}$	$\textit{O}(\textit{N}^{0.9\delta})$	Ø	0.01
TU'06	$O(N^{\delta})$	$2^{\textit{O}((\log \log \textit{N})^{1.01})}$	$\textit{O}(\textit{N}^{0.9\delta})$	Ø	0.01
GUV'09, KT'22	$O(N^{\delta})$	$\operatorname{polylog}(N)$	$O(N^{0.9\delta})$	Ø	0.01

Reference(s)	М	$D_L(\downarrow)$	$K_L(\uparrow)$	$K_{R}(\uparrow)$	$\varepsilon(\downarrow)$
Existential	<i>O</i> (<i>N</i>)	O(1)	<i>O</i> (<i>N</i>)	<i>O</i> (<i>M</i>)	0.01
CRVW'02;	<i>O</i> (<i>N</i>)	O (1)	O(N)	Ø	0.01
CRT'23; Gol'23	O(N)	O(1)	O(N)	Ø	0.01
HLMRZ'25	O(N)	$\mathcal{O}(1)$	O(N)	O(M)	0.01
Existential	$O(N^{\delta})$	$O(\log(N))$	$O(N^{0.9\delta})$	<i>O</i> (<i>M</i>)	0.01
TUZ'01	$O(N^{\delta})$	$2^{\mathcal{O}((\log \log N)^2)}$	$\textit{O}(\textit{N}^{0.9\delta})$	Ø	0.01
TU'06	$O(N^{\delta})$	$2^{\textit{O}((\log \log \textit{N})^{1.01})}$	$\textit{O}(\textit{N}^{0.9\delta})$	Ø	0.01
GUV'09, KT'22	$O(N^{\delta})$	$\operatorname{polylog}(N)$	$O(N^{0.9\delta})$	Ø	0.01
Us (on KT'22)	$O(N^{\delta})$	$\operatorname{polylog}(N)$	$\textit{O}(\textit{N}^{0.9\delta})$	$O(\min(M, \frac{N}{M}))$	0.01

Part 1: Two-Sided Lossless Expanders in the Unbalanced Setting [CGRZ'24]

Part 1 Outline

- Main results
- Construction of the KT graph
- Right to left expansion
- Tightness
- Open Questions

Theorem (CGRZ'24)

Theorem (CGRZ'24)

•
$$D_L = \operatorname{polylog}(N)$$

Theorem (CGRZ'24)

- $D_L = \operatorname{polylog}(N)$
- $M \approx N^{\delta}$

Theorem (CGRZ'24)

- $D_L = \operatorname{polylog}(N)$
- $M \approx N^{\delta}$
- $K_L = N^{0.99\delta}$ (from KT'22)

Theorem (CGRZ'24)

The KT graph is a right lossless expander. I.e., for infinitely many N and all constant $0 < \delta < 0.99$, there exists an explicit (D_L, D_R) -biregular two-sided $(K_L, \varepsilon_L = 0.01, K_R, \varepsilon_R = 0.01)$ -lossless expander where

• $D_L = \operatorname{polylog}(N)$

• If
$$\delta \leq \frac{1}{2}$$
, then $K_R = O\left(\frac{M}{D_L}\right)$

- $M \approx N^{\delta}$
- $K_L = N^{0.99\delta}$ (from KT'22)

Theorem (CGRZ'24)

- $D_L = \operatorname{polylog}(N)$
- $M \approx N^{\delta}$
- $K_L = N^{0.99\delta}$ (from KT'22)

• If
$$\delta \leq \frac{1}{2}$$
, then $K_R = O\left(\frac{M}{D_L}\right)$

• If
$$\delta > \frac{1}{2}$$
, then $K_R = O\left(\frac{N}{MD_L}\right)$

Theorem (CGRZ'24)

The KT graph is a right lossless expander. I.e., for infinitely many N and all constant $0 < \delta < 0.99$, there exists an explicit (D_L, D_R) -biregular two-sided $(K_L, \varepsilon_L = 0.01, K_R, \varepsilon_R = 0.01)$ -lossless expander where

- $D_L = \operatorname{polylog}(N)$
- $M \approx N^{\delta}$
- $K_L = N^{0.99\delta}$ (from KT'22)

• If
$$\delta \leq \frac{1}{2}$$
, then $K_{R} = O\left(\frac{M}{D_{L}}\right)$

• If
$$\delta > \frac{1}{2}$$
, then $K_{R} = O\left(\frac{N}{MD_{L}}\right)$

Remark

When $M \leq \sqrt{N}$, have that $K_R = O(M/D_L)$ is optimal. Otherwise since $ND_L = MD_R$, for a subset $|S_R| = \omega(M/D_L)$ we would have $|\Gamma(S_R)| = \omega(M/D_L) \cdot D_R = \omega(N)$.

Theorem (CGRZ'24)

The KT graph is a right lossless expander. I.e., for infinitely many N and all constant $0 < \delta < 0.99$, there exists an explicit (D_L, D_R) -biregular two-sided $(K_L, \varepsilon_L = 0.01, K_R, \varepsilon_R = 0.01)$ -lossless expander where

- $D_L = \operatorname{polylog}(N)$
- $M \approx N^{\delta}$
- $K_L = N^{0.99\delta}$ (from KT'22)

• If
$$\delta \leq \frac{1}{2}$$
, then $K_{R} = O\left(\frac{M}{D_{L}}\right)$

• If
$$\delta > \frac{1}{2}$$
, then $K_R = O\left(\frac{N}{MD_L}\right)$

Theorem (CGRZ'24)

When $M > \sqrt{N}$, our construction cannot achieve K_R larger than $O\left(\frac{N}{MD_l}\right)$.

Part 1 Outline

- Main results
- Construction of the KT graph
- Right to left expansion
- Tightness
- Open Questions

Notation

For $n \in \mathbb{N}$ and a prime power q, define

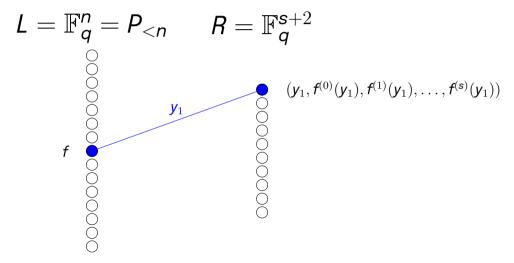
- Polynomials of deg < n: $P_{< n} = \{f \in \mathbb{F}_q[x] \mid \deg(f) < n\}$
- Iterated derivative: $f^{(i)}(x) = rac{\mathrm{d}^i}{\mathrm{d}x^i} f(x) \in \mathbb{F}_q[x]$

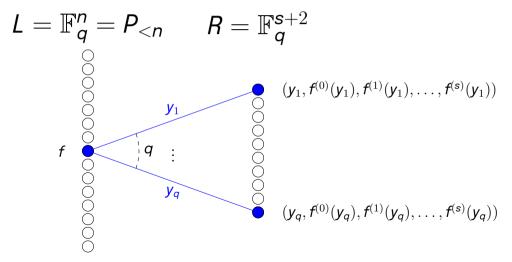
Given $n, s, q \in \mathbb{N}$ such that $s = \delta n$ for $\delta < 1$ and prime q > n, construct:

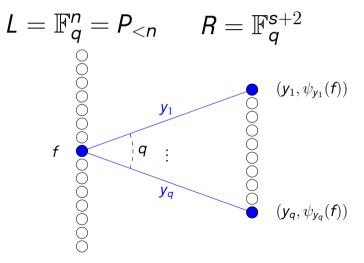
 $L = \mathbb{F}_q^n = P_{< n}$

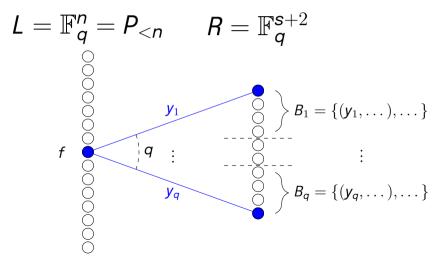
$$L = \mathbb{F}_q^n = P_{$$

$$L = \mathbb{F}_q^n = P_{$$



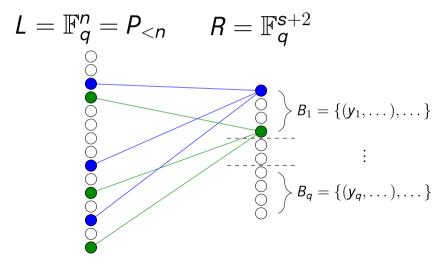






Given $n, s, q \in \mathbb{N}$ such that $s = \delta n$ for $\delta < 1$ and prime q > n, construct:

 $L = \mathbb{F}_q^n = P_{< n}$ $R = \mathbb{F}_q^{s+2}$ $\begin{array}{c} \bullet \\ \bullet \\ \bullet \\ \bullet \\ \bullet \end{array} \end{array} \right\} B_1 = \{ (y_1, \dots), \dots \}$ $\begin{array}{c} & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ \end{array} \right\} B_q = \{(y_q, \dots), \dots\}$



Part 1 Outline

- Main results
- Construction of the KT graph
- Right to left expansion
- Tightness
- Open Questions

Theorem

If $n \ge s + 1$, then G is a right (K_R, ε_R)-lossless expander with $K_R = \gamma q^{s+1}$ and $\varepsilon_R = \gamma \cdot q^{\max(2s+2-n,0)}$ where γ is arbitrary.

Theorem

If $n \ge s + 1$, then G is a right (K_R, ε_R) -lossless expander with $K_R = \gamma q^{s+1}$ and $\varepsilon_R = \gamma \cdot q^{\max(2s+2-n,0)}$ where γ is arbitrary.

 $\underline{n>2s+2}$

 $\gamma = 0.01$

Theorem

If $n \ge s + 1$, then G is a right (K_R, ε_R) -lossless expander with $K_R = \gamma q^{s+1}$ and $\varepsilon_R = \gamma \cdot q^{\max(2s+2-n,0)}$ where γ is arbitrary.

 $\underline{n>2s+2}$

$$\gamma = 0.01$$
$$\varepsilon_{\rm B} = 0.01$$

Theorem

If $n \ge s + 1$, then G is a right (K_R, ε_R) -lossless expander with $K_R = \gamma q^{s+1}$ and $\varepsilon_R = \gamma \cdot q^{\max(2s+2-n,0)}$ where γ is arbitrary.

n > 2s + 2

$$\gamma = 0.01$$

$$\varepsilon_R = 0.01$$

$$K_R = 0.01 \cdot q^{s+1} = O\left(\frac{M}{D_L}\right)$$

Theorem

If $n \ge s + 1$, then G is a right (K_R, ε_R) -lossless expander with $K_R = \gamma q^{s+1}$ and $\varepsilon_R = \gamma \cdot q^{\max(2s+2-n,0)}$ where γ is arbitrary.

$$> 2s+2 \qquad \qquad \underline{n \le 2s+2}$$

$$\gamma = 0.01$$

$$\varepsilon_R = 0.01$$

$$K_R = 0.01 \cdot q^{s+1} = O\left(\frac{M}{D_L}\right)$$

n

Theorem

If $n \ge s + 1$, then G is a right (K_R, ε_R) -lossless expander with $K_R = \gamma q^{s+1}$ and $\varepsilon_R = \gamma \cdot q^{\max(2s+2-n,0)}$ where γ is arbitrary.

 $\underline{n > 2s + 2} \qquad \qquad \underline{n \le 2s + 2}$

$$\gamma = 0.01 \qquad \qquad \gamma = 0.01 \cdot q^{n - (2s+2)}$$
$$\varepsilon_B = 0.01$$

$$K_R = 0.01 \cdot \boldsymbol{q}^{s+1} = O\left(\frac{M}{D_L}\right)$$

Theorem

If $n \ge s + 1$, then G is a right (K_R, ε_R) -lossless expander with $K_R = \gamma q^{s+1}$ and $\varepsilon_R = \gamma \cdot q^{\max(2s+2-n,0)}$ where γ is arbitrary.

 $\underline{n > 2s + 2} \qquad \qquad \underline{n \le 2s + 2}$

$$\gamma = 0.01 \qquad \gamma = 0.01 \cdot q^{n-(2s+2)}$$
$$\varepsilon_R = 0.01 \qquad \varepsilon_R = 0.01$$

$$\mathcal{K}_{R} = 0.01 \cdot \boldsymbol{q}^{s+1} = \mathcal{O}\left(\frac{M}{D_{L}}\right)$$

Theorem

If $n \ge s + 1$, then G is a right (K_R, ε_R) -lossless expander with $K_R = \gamma q^{s+1}$ and $\varepsilon_R = \gamma \cdot q^{\max(2s+2-n,0)}$ where γ is arbitrary.

 $\underline{n > 2s + 2} \qquad \underline{n \le 2s + 2}$

Theorem

If $n \ge s + 1$, then G is a right (K_R, ε_R) -lossless expander with $K_R = \gamma q^{s+1}$ and $\varepsilon_R = \gamma \cdot q^{\max(2s+2-n,0)}$ where γ is arbitrary.

 $\underline{n > 2s + 2} \qquad \underline{n \le 2s + 2}$

Theorem

If $n \ge s + 1$, then G is a right (K_R, ε_R)-lossless expander with $K_R = \gamma q^{s+1}$ and $\varepsilon_R = \gamma \cdot q^{\max(2s+2-n,0)}$ where γ is arbitrary.

Theorem

If $n \ge s + 1$, then G is a right (K_R, ε_R)-lossless expander with $K_R = \gamma q^{s+1}$ and $\varepsilon_R = \gamma \cdot q^{\max(2s+2-n,0)}$ where γ is arbitrary.

Lemma

The KT graph G is right-regular with degree $D_R = q^{n-(s+1)}$.

Theorem

If $n \ge s + 1$, then G is a right (K_R, ε_R) -lossless expander with $K_R = \gamma q^{s+1}$ and $\varepsilon_R = \gamma \cdot q^{\max(2s+2-n,0)}$ where γ is arbitrary.

Lemma

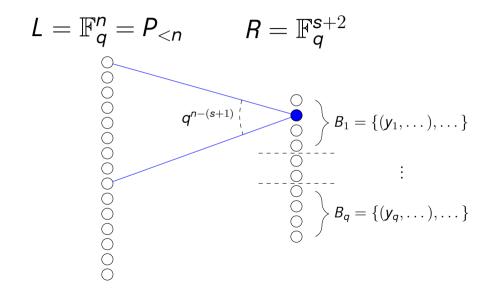
The KT graph G is right-regular with degree $D_R = q^{n-(s+1)}$.

Lemma

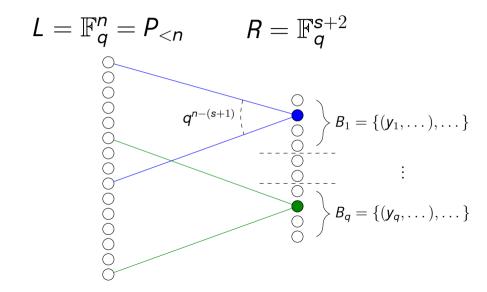
For any pair of right vertices $w \in B_i$ and $w' \in B_j$ for $i \neq j$:

$$|\Gamma(\mathbf{w}) \cap \Gamma(\mathbf{w}')| \le \begin{cases} \mathbf{q}^{n-(2s+2)} & \mathbf{n} \ge 2s+2\\ 1 & \mathbf{n} \le 2s+2 \end{cases}$$

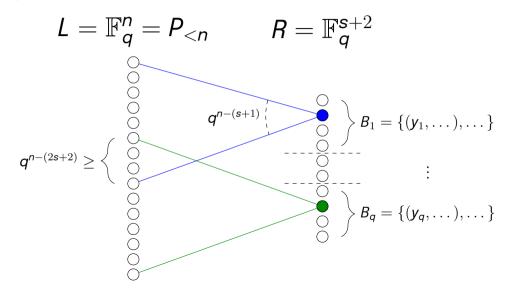
Right to Left Expansion



Right to Left Expansion



Right to Left Expansion



Theorem

If $n \ge s + 1$, then G is a right (K_R, ε_R)-lossless expander with $K_R = \gamma q^{s+1}$ and $\varepsilon_R = \gamma \cdot q^{\max(2s+2-n,0)}$ where γ is arbitrary.

Theorem

If $n \ge s + 1$, then G is a right (K_R, ε_R) -lossless expander with $K_R = \gamma q^{s+1}$ and $\varepsilon_R = \gamma \cdot q^{\max(2s+2-n,0)}$ where γ is arbitrary.

Theorem

If $n \ge s + 1$, then G is a right (K_R, ε_R)-lossless expander with $K_R = \gamma q^{s+1}$ and $\varepsilon_R = \gamma \cdot q^{\max(2s+2-n,0)}$ where γ is arbitrary.

Proof.

• Assume $T \subseteq R = \mathbb{F}_q^{s+2}$, $|T| = K_R$ is evenly spread among q buckets.

Theorem

If $n \ge s + 1$, then G is a right (K_R, ε_R)-lossless expander with $K_R = \gamma q^{s+1}$ and $\varepsilon_R = \gamma \cdot q^{\max(2s+2-n,0)}$ where γ is arbitrary.

- Assume $T \subseteq R = \mathbb{F}_q^{s+2}$, $|T| = K_R$ is evenly spread among q buckets.
- Use two levels of inclusion-exclusion to bound left neighborhood.

Theorem

If $n \ge s + 1$, then G is a right (K_R, ε_R)-lossless expander with $K_R = \gamma q^{s+1}$ and $\varepsilon_R = \gamma \cdot q^{\max(2s+2-n,0)}$ where γ is arbitrary.

- Assume $T \subseteq R = \mathbb{F}_q^{s+2}$, $|T| = K_R$ is evenly spread among q buckets.
- Use two levels of inclusion-exclusion to bound left neighborhood.
- First level given by $D_R \cdot |T|$.

Theorem

If $n \ge s + 1$, then G is a right (K_R, ε_R)-lossless expander with $K_R = \gamma q^{s+1}$ and $\varepsilon_R = \gamma \cdot q^{\max(2s+2-n,0)}$ where γ is arbitrary.

- Assume $T \subseteq R = \mathbb{F}_q^{s+2}$, $|T| = K_R$ is evenly spread among q buckets.
- Use two levels of inclusion-exclusion to bound left neighborhood.
- First level given by $D_R \cdot |T|$.
- Bound on second level given by left overlap lemma.

Problem

Problem

• Given data: *m* evaluation points $y_1, \ldots, y_m \in \mathbb{F}_q$ and s + 1 derivatives $\{(z_{0,j}, \ldots, z_{s,j})\}_{i=1}^m$ at each point. In total m(s + 1) data points.

Problem

- Given data: *m* evaluation points $y_1, \ldots, y_m \in \mathbb{F}_q$ and s + 1 derivatives $\{(z_{0,j}, \ldots, z_{s,j})\}_{j=1}^m$ at each point. In total m(s + 1) data points.
- Want to find lowest degree $f \in \mathbb{F}_q[x]$ such that $f^{(i)}(y_j) = z_{i,j}$ for $i \in \{0, \ldots, s\}$ and $j \in [m]$.

Problem

- Given data: *m* evaluation points $y_1, \ldots, y_m \in \mathbb{F}_q$ and s + 1 derivatives $\{(z_{0,j}, \ldots, z_{s,j})\}_{j=1}^m$ at each point. In total m(s + 1) data points.
- Want to find lowest degree $f \in \mathbb{F}_q[x]$ such that $f^{(i)}(y_j) = z_{i,j}$ for $i \in \{0, \ldots, s\}$ and $j \in [m]$.

Problem

- Given data: *m* evaluation points $y_1, \ldots, y_m \in \mathbb{F}_q$ and s + 1 derivatives $\{(z_{0,j}, \ldots, z_{s,j})\}_{j=1}^m$ at each point. In total m(s + 1) data points.
- Want to find lowest degree $f \in \mathbb{F}_q[x]$ such that $f^{(i)}(y_j) = z_{i,j}$ for $i \in \{0, \ldots, s\}$ and $j \in [m]$.

Theorem (Hermite ineterpolation)

There exists a unique $f \in P_{< m(s+1)}$ satisfying the requirements.

Problem

- Given data: *m* evaluation points $y_1, \ldots, y_m \in \mathbb{F}_q$ and s + 1 derivatives $\{(z_{0,j}, \ldots, z_{s,j})\}_{j=1}^m$ at each point. In total m(s + 1) data points.
- Want to find lowest degree $f \in \mathbb{F}_q[x]$ such that $f^{(i)}(y_j) = z_{i,j}$ for $i \in \{0, \ldots, s\}$ and $j \in [m]$.

Theorem (Hermite ineterpolation)

There exists a unique $f \in P_{< m(s+1)}$ satisfying the requirements.

Theorem (Generalized Hermite interpolation)

For $n \ge m(s+1)$, there exist exactly $q^{n-m(s+1)}$ satisfactory polynomials in $P_{< n}$.

Right-Regularity

Lemma

The KT graph G is right-regular with degree $D_R = q^{n-(s+1)}$.

Right-Regularity

Lemma

The KT graph G is right-regular with degree $D_R = q^{n-(s+1)}$.

Proof.

Immediate by Hermite interpolation

Lemma

For any $w_1 \in B_1$ and $w_2 \in B_2$, have that $|\Gamma(w_1) \cap \Gamma(w_2)| \leq q^{\max((n-(2s+2),0))}$.

Lemma

For any $w_1 \in B_1$ and $w_2 \in B_2$, have that $|\Gamma(w_1) \cap \Gamma(w_2)| \leq q^{\max((n-(2s+2),0))}$.

Lemma

For any $w_1 \in B_1$ and $w_2 \in B_2$, have that $|\Gamma(w_1) \cap \Gamma(w_2)| \leq q^{\max((n-(2s+2),0))}$.

Proof.

• Define $\psi_{y_1,y_2}: \mathbb{F}_q^n \to \mathbb{F}_q^{2s+2}$ as $\psi_{y_1,y_2}(f) = \psi_{y_1}(f) \circ \psi_{y_2}(f)$, so it's \mathbb{F}_q -linear.

Lemma

For any $w_1 \in B_1$ and $w_2 \in B_2$, have that $|\Gamma(w_1) \cap \Gamma(w_2)| \leq q^{\max((n-(2s+2),0))}$.

- Define $\psi_{y_1,y_2}: \mathbb{F}_q^n \to \mathbb{F}_q^{2s+2}$ as $\psi_{y_1,y_2}(f) = \psi_{y_1}(f) \circ \psi_{y_2}(f)$, so it's \mathbb{F}_q -linear.
- For $w_1 = (y_1, z_1)$ and $w_2 = (y_2, z_2)$ where $y_1, y_2 \in \mathbb{F}_q$ and $z_1, z_2 \in \mathbb{F}_q^{s+1}$, we have $|\Gamma(w_1) \cap \Gamma(w_2)| = |\psi_{y_1, y_2}^{-1}(z_1, z_2)|$.

Lemma

For any $w_1 \in B_1$ and $w_2 \in B_2$, have that $|\Gamma(w_1) \cap \Gamma(w_2)| \leq q^{\max((n-(2s+2),0))}$.

- Define $\psi_{y_1,y_2}: \mathbb{F}_q^n \to \mathbb{F}_q^{2s+2}$ as $\psi_{y_1,y_2}(f) = \psi_{y_1}(f) \circ \psi_{y_2}(f)$, so it's \mathbb{F}_q -linear.
- For $w_1 = (y_1, z_1)$ and $w_2 = (y_2, z_2)$ where $y_1, y_2 \in \mathbb{F}_q$ and $z_1, z_2 \in \mathbb{F}_q^{s+1}$, we have $|\Gamma(w_1) \cap \Gamma(w_2)| = |\psi_{y_1, y_2}^{-1}(z_1, z_2)|$.
- When $n \ge 2s + 2$, Hermite interpolation implies $\left|\psi_{y_1,y_2}^{-1}(z_1,z_2)\right| = q^{n-(2s+2)}$.

Lemma

For any $w_1 \in B_1$ and $w_2 \in B_2$, have that $|\Gamma(w_1) \cap \Gamma(w_2)| \leq q^{\max((n-(2s+2),0))}$.

- Define $\psi_{y_1,y_2}: \mathbb{F}_q^n \to \mathbb{F}_q^{2s+2}$ as $\psi_{y_1,y_2}(f) = \psi_{y_1}(f) \circ \psi_{y_2}(f)$, so it's \mathbb{F}_q -linear.
- For $w_1 = (y_1, z_1)$ and $w_2 = (y_2, z_2)$ where $y_1, y_2 \in \mathbb{F}_q$ and $z_1, z_2 \in \mathbb{F}_q^{s+1}$, we have $|\Gamma(w_1) \cap \Gamma(w_2)| = |\psi_{y_1, y_2}^{-1}(z_1, z_2)|$.
- When $n \leq 2s + 2$, Hermite interpolation implies $\left|\psi_{y_1,y_2}^{-1}(z_1,z_2)\right| \leq 1$.

Part 1 Outline

- Main results
- Construction of the KT graph
- Right to left expansion
- Tightness
- Open Questions

Remark

When $M \leq \sqrt{N}$, the max size of right sets $K_R = O(M/D_L)$ that can expand losslessly is optimal.

Theorem

When $M > \sqrt{N}$, the KT graph cannot achieve K_R larger than $O\left(\frac{N}{MD_L}\right)$. That is, when s + 1 < n < 2s + 2, the tradeoff $K_R = \varepsilon_R \cdot q^{n-(s+1)}$ is optimal.

Theorem

For s + 1 < n < 2s + 2 and $0 < \gamma \le 2$, there exists $T \subseteq R$ such that $|T| = \gamma q^{n-(s+1)} = K_R$ and $|\Gamma(T)| = (1 - \frac{\gamma}{4}) D_R |T|$.

Theorem

For s + 1 < n < 2s + 2 and $0 < \gamma \le 2$, there exists $T \subseteq R$ such that $|T| = \gamma q^{n-(s+1)} = K_R$ and $|\Gamma(T)| = (1 - \frac{\gamma}{4}) D_R |T|$.

Lemma (Can achieve worst left overlap)

Let $y_1, y_2 \in \mathbb{F}_q$ such that $y_1 \neq y_2$. Then there exist $T_1 \subseteq B_{y_1}$ and $T_2 \subseteq B_{y_2}$ such that $|T_1| = |T_2| = \frac{\kappa_R}{2}$ and $|\Gamma(T_1) \cap \Gamma(T_2)| = |T_1| \cdot |T_2|$.

Theorem

For s + 1 < n < 2s + 2 and $0 < \gamma \le 2$, there exists $T \subseteq R$ such that $|T| = \gamma q^{n-(s+1)} = K_R$ and $|\Gamma(T)| = (1 - \frac{\gamma}{4}) D_R |T|$.

Lemma (Can achieve worst left overlap)

Let $y_1, y_2 \in \mathbb{F}_q$ such that $y_1 \neq y_2$. Then there exist $T_1 \subseteq B_{y_1}$ and $T_2 \subseteq B_{y_2}$ such that $|T_1| = |T_2| = \frac{K_B}{2}$ and $|\Gamma(T_1) \cap \Gamma(T_2)| = |T_1| \cdot |T_2|$.

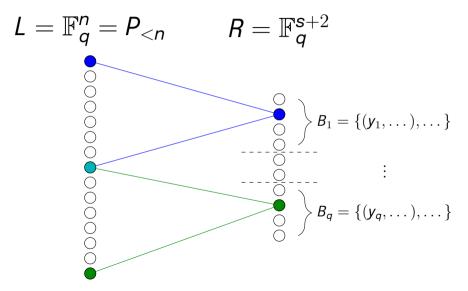
Proof.

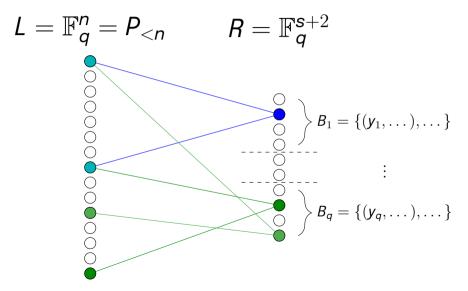
Let $T = T_1 \cup T_2$ and use inclusion-exclusion to compute

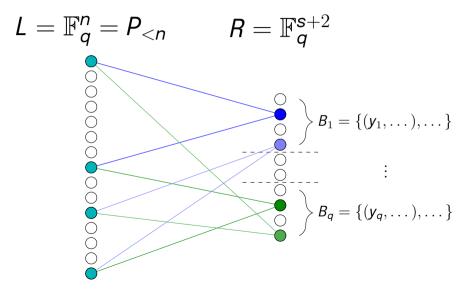
$$|\Gamma(T)| = D_R \cdot (|T_1| + |T_2|) - |T_1| \cdot |T_2| = (1 - \frac{\gamma}{4}) D_R |T|$$

Lemma (Can achieve worst left overlap)

Let $y_1, y_2 \in \mathbb{F}_q$ such that $y \neq y'$. Then there exist $T_1 \subseteq B_{y_1}$ and $T_2 \subseteq B_{y_2}$ such that $|T_1| = |T_2| = \frac{K_B}{2}$ and $|\Gamma(T_1) \cap \Gamma(T_2)| = |T_1| \cdot |T_2|$.







Lemma (Can achieve worst left overlap)

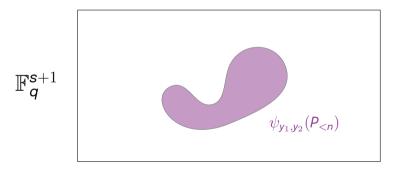
Let $y_1, y_2 \in \mathbb{F}_q$ such that $y \neq y'$. Then there exist $T_1 \subseteq B_{y_1}$ and $T_2 \subseteq B_{y_2}$ such that $|T_1| = |T_2| = \frac{K_B}{2}$ and $|\Gamma(T_1) \cap \Gamma(T_2)| = |T_1| \cdot |T_2|$.

Observation

To construct such T_1, T_2 , suffices to construct $S_1, S_2 \subseteq \mathbb{F}_q^{s+1}$ with $|S_1| = |S_2| = \frac{\kappa_{\scriptscriptstyle R}}{2}$ such that $S_1 \times S_2 \subseteq \psi_{y_1, y_2}(P_{< n})$ by letting $T_1 = \{(y_1, s_1)\}_{s_1 \in S_1}$ and $T_2 = \{(y_2, s_2)\}_{s_2 \in S_2}$.

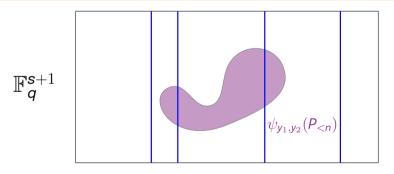
Construct
$$S_1, S_2 \subseteq \mathbb{F}_q^{s+1}$$
 with $|S_1| = |S_2| = \frac{\kappa_R}{2}$ such that $S_1 \times S_2 \subseteq \psi_{y_1, y_2}(P_{< n})$.

Construct
$$S_1, S_2 \subseteq \mathbb{F}_q^{s+1}$$
 with $|S_1| = |S_2| = \frac{\kappa_R}{2}$ such that $S_1 \times S_2 \subseteq \psi_{y_1, y_2}(P_{< n})$.



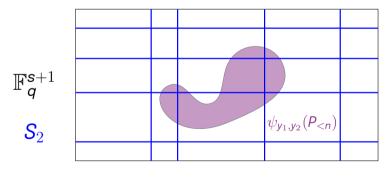
$$\mathbb{F}_{q}^{s+1}$$

Construct
$$S_1, S_2 \subseteq \mathbb{F}_q^{s+1}$$
 with $|S_1| = |S_2| = \frac{\kappa_R}{2}$ such that $S_1 \times S_2 \subseteq \psi_{y_1, y_2}(P_{< n})$.



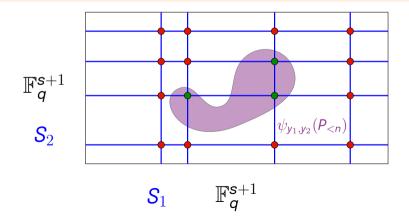
Goal

Construct $S_1, S_2 \subseteq \mathbb{F}_q^{s+1}$ with $|S_1| = |S_2| = \frac{\kappa_R}{2}$ such that $S_1 \times S_2 \subseteq \psi_{y_1, y_2}(P_{< n})$.





Construct
$$S_1, S_2 \subseteq \mathbb{F}_q^{s+1}$$
 with $|S_1| = |S_2| = \frac{\kappa_R}{2}$ such that $S_1 \times S_2 \subseteq \psi_{y_1, y_2}(P_{< n})$.



Goal

Construct
$$S_1, S_2 \subseteq \mathbb{F}_q^{s+1}$$
 with $|S_1| = |S_2| = \frac{\kappa_R}{2}$ such that $S_1 \times S_2 \subseteq \psi_{y_1, y_2}(P_{< n})$.

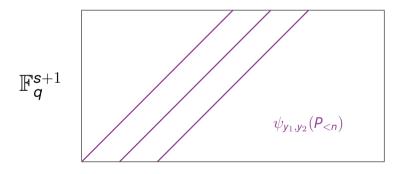
Lemma

For s + 1 < n < 2s + 2, we have

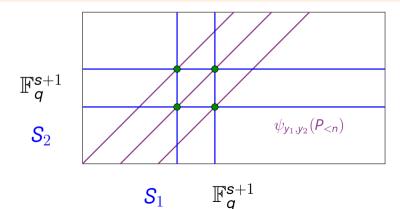
$$\psi_{y_1,y_2}(P_{$$

where $\sigma: P_{n-(s+1)} \rightarrow P_{<s+1}$ is an injective homomorphism.

Construct
$$S_1, S_2 \subseteq \mathbb{F}_q^{s+1}$$
 with $|S_1| = |S_2| = \frac{\kappa_R}{2}$ such that $S_1 \times S_2 \subseteq \psi_{y_1, y_2}(P_{< n})$.



Construct
$$S_1, S_2 \subseteq \mathbb{F}_q^{s+1}$$
 with $|S_1| = |S_2| = \frac{\kappa_R}{2}$ such that $S_1 \times S_2 \subseteq \psi_{y_1, y_2}(P_{< n})$.



Lemma (Can achieve worst left overlap)

Let $y_1, y_2 \in \mathbb{F}_q$ such that $y \neq y'$. Then there exist $T_1 \subseteq B_{y_1}$ and $T_2 \subseteq B_{y_2}$ such that $|T_1| = |T_2| = \frac{K_B}{2}$ and $|\Gamma(T_1) \cap \Gamma(T_2)| = |T_1| \cdot |T_2|$.

Theorem

When $M > \sqrt{N}$, the KT graph cannot achieve K_R larger than $O\left(\frac{N}{MD_L}\right)$. That is, when s + 1 < n < 2s + 2, the tradeoff $K_R = \varepsilon_R \cdot q^{n-(s+1)}$ is optimal.

Part 1 Outline

- Main results
- Construction of the KT graph
- Right to left expansion
- Tightness
- Open Questions

Reference(s)	М	$D_L(\downarrow)$	$K_L(\uparrow)$	$\mathcal{K}_{\mathcal{R}}(\uparrow)$	$\varepsilon(\downarrow)$
Existential	<i>O</i> (<i>N</i>)	O (1)	<i>O</i> (<i>N</i>)	<i>O</i> (<i>M</i>)	0.01
HLMRZ'25	O(N)	O(1)	O(N)	O(M)	0.01
Existential	$O(N^{\delta})$	$O(\log(N))$	$O(N^{0.9\delta})$	<i>O</i> (<i>M</i>)	0.01
Us (on KT'22)	$O(N^{\delta})$	$\operatorname{polylog}(N)$	$\textit{O}(\textit{N}^{0.9\delta})$	$O(\min(M, \frac{N}{M}))$	0.01

Reference(s)	М	$D_L(\downarrow)$	$K_L(\uparrow)$	$K_{R}(\uparrow)$	$\varepsilon(\downarrow)$
Existential	O (N)	O (1)	<i>O</i> (<i>N</i>)	<i>O</i> (<i>M</i>)	0.01
HLMRZ'25	O(N)	$\mathcal{O}(1)$	O(N)	O(M)	0.01
Existential	$O(N^{\delta})$	$O(\log(N))$	$O(N^{0.9\delta})$	<i>O</i> (<i>M</i>)	0.01
Us (on KT'22)	$O(N^{\delta})$	$\operatorname{polylog}(N)$	$\textit{O}(\textit{N}^{0.9\delta})$	$O(\min(M, \frac{N}{M}))$	0.01
Existential	O (N)	O(1)	O(N)	<i>O</i> (<i>M</i>)	$O(1/D_L)$

Reference(s)	М	$D_L(\downarrow)$	$K_L(\uparrow)$	$K_{R}(\uparrow)$	$\varepsilon(\downarrow)$
Existential	<i>O</i> (<i>N</i>)	O (1)	<i>O</i> (<i>N</i>)	<i>O</i> (<i>M</i>)	0.01
HLMRZ'25	O(N)	$\mathcal{O}(1)$	O(N)	O(M)	0.01
Existential	$O(N^{\delta})$	$O(\log(N))$	$\textit{O}(\textit{N}^{0.9\delta})$	<i>O</i> (<i>M</i>)	0.01
Us (on KT'22)	$O(N^{\delta})$	$\operatorname{polylog}(N)$	$\textit{O}(\textit{N}^{0.9\delta})$	$O(\min(M, \frac{N}{M}))$	0.01
Existential	<i>O</i> (<i>N</i>)	O (1)	O(N)	<i>O</i> (<i>M</i>)	$O(1/D_L)$
Existential	$O(N^{\delta})$	O(1)	$\textit{O}(\textit{N}^{0.3\delta})$	O(M)	0.01

- When $M > \sqrt{N}$, improve our K_R to $O(M/D_L)$ with different constructions?
- Explicitly construct balanced ultra-lossless expanders with $\varepsilon = O(1/D_L)$?
- Explicitly construct unbalanced expanders with $D_L = O(1)$ for $K_L = O(N^{0.3\delta})$?

- When $M > \sqrt{N}$, improve our K_R to $O(M/D_L)$ with different constructions?
- Explicitly construct balanced ultra-lossless expanders with $\varepsilon = O(1/D_L)$?
- Explicitly construct unbalanced expanders with $D_L = O(1)$ for $K_L = O(N^{0.3\delta})$?
- The KT graph is based on multiplicity codes while the GUV graph is based on Parvaresh-Vardy codes since they have good list-recoverability. Recent work [Chen, Zhang'25] gives better bounds on list-recoverability for folded RS codes. Use to build better condensers?

Part 2: Other Projects & Future Directions

Vertex Expanders

Bipartite Vertex Expander

- A (D_L, D_R) -biregular graph $G = (L \sqcup R, E)$ is a one-sided (K_L, ε_L) -lossless expander if for all $S \subseteq L$ s.t. $|S| \leq K_L$ then $|\Gamma(S)| \geq (1 \varepsilon_L) \cdot D_L \cdot |S|$.
- *G* is a *two-sided* $(K_L, \varepsilon_L, K_R, \varepsilon_R)$ -*lossless expander* if, moreover, for all $S \subseteq R$ s.t. $|S| \leq K_R$ then $|\Gamma(S)| \geq (1 \varepsilon_R) \cdot D_R \cdot |S|$.

With N = |L| and M = |R|, we can view *G* instead as its neighborhood function:

 $\Gamma: [\mathbf{N}] \times [\mathbf{D}_L] \to [\mathbf{M}]$

Vertex Expanders

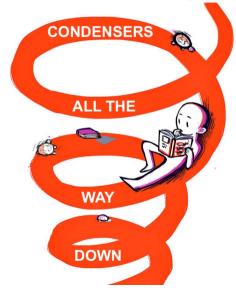
Bipartite Vertex Expander

- A (D_L, D_R) -biregular graph $G = (L \sqcup R, E)$ is a *one-sided* (K_L, ε_L) -*lossless* expander if for all $S \subseteq L$ s.t. $|S| \leq K_L$ then $|\Gamma(S)| \geq (1 - \varepsilon_L) \cdot D_L \cdot |S|$.
- *G* is a *two-sided* $(K_L, \varepsilon_L, K_R, \varepsilon_R)$ -*lossless expander* if, moreover, for all $S \subseteq R$ s.t. $|S| \leq K_R$ then $|\Gamma(S)| \geq (1 \varepsilon_R) \cdot D_R \cdot |S|$.

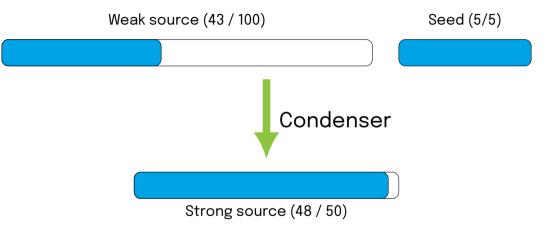
With $n = \log |L|$, $m = \log |R|$, and $d = \log D_L$, we can view *G* instead as its neighborhood function:

$$\Gamma: \{0,1\}^n \times \{0,1\}^d \to \{0,1\}^m$$

It Was Condensers All Along!



Seeded Condensers



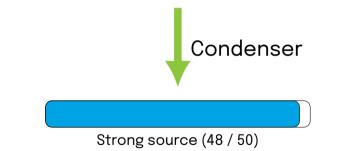
Seeded Condensers

Expanders give condensers

If G is a one-sided (K_L, ε) -expander, then Γ is a lossless condenser for sources with min-entropy at most k and its output ε -close in TV distance to a source with min-entropy at least k + d.

What If You Don't Have Access to a Seed?

Weak source (60 / 100)



What If You Don't Have Access to a Seed?

NO!

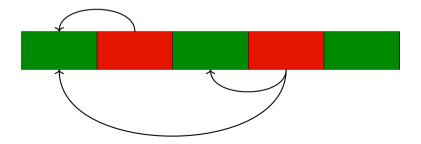
What If You Don't Have Access to a Seed?

NO!

Solution: Distributions must be structured.

Online Non-Oblivious Symbol Fixing Sources (oNOSFs)

- ℓ blocks each of length *n*.
- g uniform "good" blocks, and ℓg "bad" blocks that are arbitrary functions the of good blocks that **appear before them**.



Theorem (CGR, FOCS'24)

- Can't condense (g, ℓ) -oNOSFs beyond rate $\frac{1}{\lfloor \ell/q \rfloor}$.
- Can condense (g, ℓ) -oNOSFs to rate $\frac{1}{|\ell/g|}$ when $n \ge 2^{\omega(\ell)}$.

Theorem (CGR, FOCS'24)

- Can't condense (g, ℓ) -oNOSFs beyond rate $\frac{1}{|\ell/q|}$.
- Can condense (g, ℓ) -oNOSFs to rate $\frac{1}{|\ell/q|}$ when $n \ge 2^{\omega(\ell)}$.

Theorem (CGRS'25)

- Construct **explicit** condensers as above when $n \ge 2^{\omega(\ell)}$.
- Show there **exist** condensers up to rate $\frac{1}{|\ell/q|}$ when n = O(1) (large).

Theorem (CGR, FOCS'24)

- Can't condense (g, ℓ) -oNOSFs beyond rate $\frac{1}{|\ell/q|}$.
- Can condense (g, ℓ) -oNOSFs to rate $\frac{1}{\lfloor \ell/g \rfloor}$ when $n \ge 2^{\omega(\ell)}$.

Theorem (CGRS'25)

- Construct **explicit** condensers as above when $n \ge 2^{\omega(\ell)}$.
- Show there **exist** condensers up to rate $\frac{1}{\lfloor \ell/q \rfloor}$ when n = O(1) (large).
- Convert leader election protocols into extractors for oNOSFs.

Theorem (CGR, FOCS'24)

- Can't condense (g, ℓ) -oNOSFs beyond rate $\frac{1}{\lfloor \ell/q \rfloor}$.
- Can condense (g, ℓ) -oNOSFs to rate $\frac{1}{\lfloor \ell/q \rfloor}$ when $n \ge 2^{\omega(\ell)}$.

Theorem (CGRS'25)

- Construct **explicit** condensers as above when $n \ge 2^{\omega(\ell)}$.
- Show there **exist** condensers up to rate $\frac{1}{\lfloor \ell/q \rfloor}$ when n = O(1) (large).
- Convert leader election protocols into extractors for oNOSFs.
- **Construct** protocols to extract from oNOSFs with $g \ge \ell O(\ell / \log^* \ell)$.

Theorem (RSZ'02)

• Upper bound on # of people needed to bias a coin flipping protocol.

Theorem (RSZ'02)

• Upper bound on # of people needed to bias a coin flipping protocol.

Theorem (CGRS'25)

Theorem (RSZ'02)

• Upper bound on # of people needed to bias a coin flipping protocol.

Theorem (CGRS'25)

• Smaller upper bound on # of people needed to bias a protocol.

Theorem (RSZ'02)

• Upper bound on # of people needed to bias a coin flipping protocol.

Theorem (CGRS'25)

- Smaller upper bound on # of people needed to bias a protocol.
- Construct **explicit** protocol that handles more adversaries than previously possible.

1. Find explicit constructions for oNOSFs with constant block length.

- 1. Find explicit constructions for oNOSFs with constant block length.
- 2. Determine possibility of condensing from oNOBFs (oNOSFs with block length 1).

- 1. Find explicit constructions for oNOSFs with constant block length.
- 2. Determine possibility of condensing from oNOBFs (oNOSFs with block length 1).

Coin flipping protocols

- 1. Find explicit constructions for oNOSFs with constant block length.
- 2. Determine possibility of condensing from oNOBFs (oNOSFs with block length 1).

Coin flipping protocols

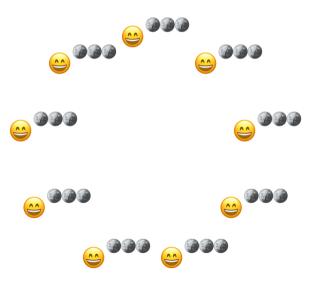
1. There's a gap between the number of adversaries our explicit protocol can handle and how many we know can bias any protocol. What's the truth?

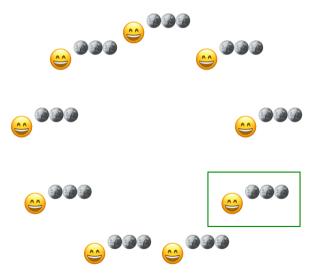
- 1. Find explicit constructions for oNOSFs with constant block length.
- 2. Determine possibility of condensing from oNOBFs (oNOSFs with block length 1).

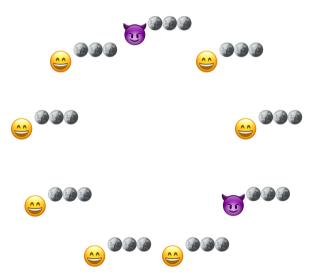
Coin flipping protocols

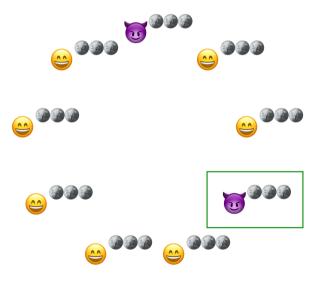
- 1. There's a gap between the number of adversaries our explicit protocol can handle and how many we know can bias any protocol. What's the truth?
- 2. (Dis)prove: For $f: \{0,1\}^{\ell} \to \{0,1\}^{m}$, there exist $b = O\left(\frac{\ell}{\log(\ell)}\right)$ bad players that can simultaneously bias 0.01m of the output coordinates.

- Committee
- Family
- Friends
- Office mates
- Cornell TCS

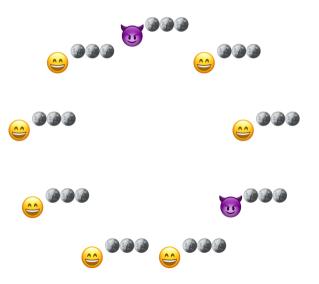








- ℓ players
- *b* adversarial
- *n* bits each
- *r* rounds
- Common channel
- No crypto



Coin flipping protocols

- ℓ players
- *b* adversarial
- *n* bits each
- *r* rounds
- Common channel
- No crypto

Coin flipping protocols

- ℓ players
- *b* adversarial
- *n* bits each
- r rounds
- Common channel
- No crypto
- Leader election \implies coin flipping

Protocols

Leader election protocol

- A *leader election protocol* π is a function on ℓ players each with *n* bits that lasts *r* rounds and chooses a player at the end of the *r* rounds.
- π is *resilient* to $b = b(\ell)$ bad players (arbitrary functions of good players in the current and past rounds) if a good player is chosen w.p. $\Omega(1)$.

Protocols

Leader election protocol

- A *leader election protocol* π is a function on ℓ players each with *n* bits that lasts *r* rounds and chooses a player at the end of the *r* rounds.
- π is *resilient* to $b = b(\ell)$ bad players (arbitrary functions of good players in the current and past rounds) if a good player is chosen w.p. $\Omega(1)$.

Coin flipping protocol

A *coin flipping protocol* instead outputs a value in $\{0, 1\}$. Resilient to *b* bad players if both $\{0, 1\}$ occur w.p. $\Omega(1)$.

Protocols

Leader election protocol

- A *leader election protocol* π is a function on ℓ players each with *n* bits that lasts *r* rounds and chooses a player at the end of the *r* rounds.
- π is *resilient* to $b = b(\ell)$ bad players (arbitrary functions of good players in the current and past rounds) if a good player is chosen w.p. $\Omega(1)$.

Coin flipping protocol

A *coin flipping protocol* instead outputs a value in $\{0, 1\}$. Resilient to *b* bad players if both $\{0, 1\}$ occur w.p. $\Omega(1)$.

Remark

By adding one more round, can convert leader election to coin flipping.

Theorem (RSZ'02)

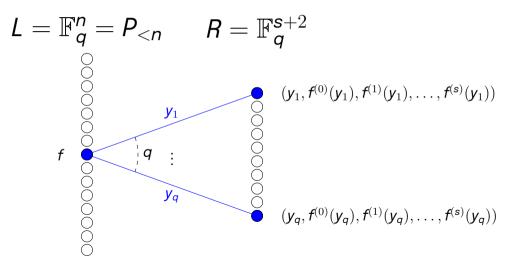
- To handle $b = \Theta(\ell)$ bad players, need $r \ge \frac{1}{2}\log^*(\ell) \log^*\log^*(\ell)$.

Theorem (CGRS'25)

- Any r-round protocl with n = 1 biased by $O\left(\frac{\ell}{\log^{(r)}(\ell)}\right)$ players.
- To handle $b = \Theta(\ell)$ bad players, need $r \ge \log^*(\ell) O(1)$.
- For $r \ge 2$, exists explicit protocol that can handle $\mathbf{b} = \mathbf{O}\left(\frac{\ell}{\log(\ell)(\log^{(r)}(\ell))^2}\right)$.

Do other list-recoverable codes give expanders with better parameters?

The KT graph is constructed based on multiplicity codes.



The GUV graph is constructed based on Parvaresh-Vardy codes.

