

On the Existence of Seedless Condensers: Exploring the Terrain

Eshan Chattopadhyay¹ Mohit Gurumukhani¹ Noam Ringach¹

¹Department of Computer Science, Cornell University

Extractors vs. Condensers	Background	Result 3: Can condense oNOSFs to
		rate $1/\lfloor \ell/g \rfloor$

Definition (Min-Entropy). The **min-entropy** of a distribution **X** is $H_{\infty}(\mathbf{X}) = -\log(\max_{x \in support(\mathbf{X})} \Pr[\mathbf{X}])$ x]).

Definition (Smooth Min-Entropy). The ε -smooth min-entropy of X is $H^{\varepsilon}_{\infty}(\mathbf{X}) = \max_{\mathbf{Y}:|\mathbf{X}-\mathbf{Y}| < \varepsilon} H_{\infty}(\mathbf{Y})$, where $|\cdot|$ is the statistical distance.

Definition (Extractor). A function Ext : $\{0,1\}^n \rightarrow$ $\{0,1\}^m$ is a ε -extractor for a class \mathcal{X} of distributions over $\{0,1\}^n$ if for all $\mathbf{X} \in \mathcal{X}$ we have

 Aggarwal, Obremski, Ribeiro, Siniscalchi, and Visconti (EUROCRYPT'20): extractors don't exist for (o)NOSFs with 99% good blocks.

Previously, the existence of condensers for (o)NOSFs were completely unknown, even with 99% of blocks being good!

Result 1: Can't condense NOSFs

Theorem. For any constant $g, \ell \in \mathbb{N}$ and ε , there exists a condenser **Cond** : $(\{0,1\}^n)^\ell \to \{0,1\}^m$ s.t. for any (g, ℓ) -oNOSF \mathbf{X} we have $H^{\varepsilon}_{\infty}(\operatorname{Cond}(\mathbf{X})) \geq \frac{1}{|\ell/m|} \cdot m - 1$ $O(\log(m))$ where $m = \Omega(n)$ and $\varepsilon = \Omega(m^{-1/4})$.

Corollary. For constant g, ℓ such that $g > \ell/2$, we can condense (g, ℓ) -oNOSFs to rate 1 - o(1).

Idea 2: Weaken adversary in later

$|\mathsf{Ext}(\mathbf{X}) - \mathbf{U}_m| \leq \varepsilon,$ where \mathbf{U}_m the uniform distribution on $\{0,1\}^m$.

Definition (Condenser). A function Cond : $\{0,1\}^n \rightarrow$ $\{0,1\}^m$ is a $(k_{in}, k_{out}, \varepsilon)$ -condenser for a class of sources \mathcal{X} if for all $\mathbf{X} \in \mathcal{X}$ we have $H_{\infty}(\mathbf{X}) \geq k_{in}$ and

 $H^{\varepsilon}_{\infty}(\operatorname{Cond}(\mathbf{X})) \geq k_{out}.$

The goal of condensers is to increase the **entropy** rate

Theorem. For all constant $g, \ell \in \mathbb{N}, f : (\{0,1\}^n)^\ell \to$ $\{0,1\}^m$ there exists a (g,ℓ) -NOSF $\mathbf X$ such that $H^{\varepsilon}_{\infty}(f(\mathbf{X})) \leq \frac{g}{\ell} \cdot m + O(1)$ with $\varepsilon = 0.99$.

Combined with the result of [AORSV'20], this shows the adversary of NOSFs is too strong for deterministic extraction or condensing.

Result 2: Can't condense oNOSFs above rate $1/|\ell/g|$

Theorem. For all constant $g, \ell \in \mathbb{N}, f : (\{0,1\}^n)^\ell \to \mathbb{N}$ $\{0,1\}^m$ there exists a (g,ℓ) -oNOSF X such that $H^{\varepsilon}_{\infty}(f(\mathbf{X})) \leq \frac{1}{|\ell/q|} \cdot m + O(1)$ with $\varepsilon = 0.99$.

blocks

Goal: Create a function $Cond(x_1, \ldots, x_\ell)$ that condenses to entropy rate 1 - o(1) when $g > \ell/2$.

Problem: The adversarial blocks with higher indices are more "powerful" since they are able to depend on more good blocks than earlier ones.

Solution: To weaken the bad blocks, we take prefixes of geometrically decreasing length.

- For i > g, let $y_i := x_i[1] \circ \cdots \circ x_i[20^{\ell-i+1}(\log n)]$.
- Let $z_1 = x_1 \circ \cdots \circ x_q$, $z_2 = y_{q+1} \circ \cdots \circ y_\ell$.
- Let $Cond(x_1, \ldots, x_\ell) = 2Ext(z_1, z_2)$.

 $\frac{k_{in}}{\cdots} \ll \frac{k_{out}}{\cdots}$ m \mathcal{N} and decrease the **entropy gap**

 $\Delta_{out} = m - k_{out}.$

Remark. Condensers can exist for certain classes of sources for which extractors **provably** can't.

Adversarial Sources

Our main results are on two classes of sources where the difference between them is the power of the adversary.

Definition (Non-Oblivious Symbol Fixing Sources). A (g, ℓ) -NOSF source $\mathbf{X} = \mathbf{X}_1, \ldots, \mathbf{X}_\ell$ is a distribution on $(\{0,1\}^n)^{\ell}$ divided as ℓ blocks each of length n for which g of the blocks are "good" (independent and uniform on $\{0,1\}^n$ and $\ell - g$ blocks are "bad" (can depend) arbitrarily on the g good blocks).

Definition (online NOSFs). A (g, ℓ) -oNOSF source $\mathbf{X} = \mathbf{X}_1, \ldots, \mathbf{X}_\ell$ is a (g, ℓ) -NOSF source where the bad blocks can only depend on the good blocks that come before them.

Idea 1: Use dominating sets to prove impossibility for (1, 2)-oNOSF

Goal: Construct a (1, 2)-oNOSF $\mathbf{X} = (\mathbf{X}_1, \mathbf{X}_2)$ s.t. w.p. 0.99, $f(\mathbf{X}_1, \mathbf{X}_2) \in D$ where $|D| \leq O(2^{m/2})$. **Lemma** (Dominating set lemma). Let G = (U, V) be bipartite graph with U = [N], V = [M] s.t. for all $u \in U : \deg(u) \ge \sqrt{M}$. Then, there exists $D \subset V$ s.t. $|D| = O(\sqrt{M})$ and $|Nbr(D)| \ge 0.99N$.

Let G = (U, V): $U = \{0, 1\}^n, V = \{0, 1\}^m$, with the edge $(u, v) \in G$ if there exists a s.t. f(u, a) = v.

Case 1: Exists $u^* \in U$ s.t. $\deg(u^*) \leq 2^{m/2}$

Let $\mathbf{X} = (u^*, \mathbf{U}_n)$. With probability 1, $f(\mathbf{X}) \in$ $Nbr(u^*)$ and $|Nbr(u^*)| \le 2^{m/2}$.

Case 2: For all $u \in U$, $deg(u) \ge 2^{m/2}$, so use lemma

Exists $D \subset V$ s.t. $|D| \leq O(2^{m/2})$ and $|Nbr(D)| \geq$ $0.99 \cdot 2^n$. Let $\mathbf{X} = (\mathbf{U}_n, \mathsf{Adv}(\mathbf{U}_n))$ where $\mathsf{Adv}(u) = a$ s.t. $f(u, a) \in D$ (if it exists). W.p. 0.99, $f(\mathbf{X}) \in D$.

Idea 3: Use an output-light two-source extractor

Definition (Output-light two-source extractor). $2Ext : \{0,1\}^{n_1+n_2} \rightarrow \{0,1\}^m$ is a *R*-output-light (k_1, k_2, ε) -two-source extractor if for independent (n_1, k_1) -source \mathbf{X}_1 and (n_2, k_2) -source \mathbf{X}_2 :

 $|\mathsf{2Ext}(\mathbf{X}_1, \mathbf{X}_2) - \mathbf{U}_m| \leq \varepsilon$

and for every $w \in \{0,1\}^m$ we have $|2\mathsf{Ext}^{-1}(w)| \leq R$.

Goal: Condense any (g, ℓ) -oNOSF source **X** with $g > \ell/2$ to rate 1 - o(1).

Case 1: $X_{q+1}, \ldots, X_{\ell}$ are bad

1. For the sake of contradiction, can't condense, so output is in some small set D with ε weight.

2. Implies many inputs to 2Ext with output in D.

3. By an averaging argument, exists an elt in D with large preimage, contradicting output-lightness.

Case 2: Exists j > g s.t. X_j is uniform

1. $g > \ell/2$, so exists $i \leq g$ s.t. \mathbf{X}_i is uniform.

Open questions

Can these condensers be made explicit?

What's the situation for other regimes, like n = O(1) and increasing ℓ ?

2. Fix output of $\mathbf{Y}_{q+1}, \ldots, \mathbf{Y}_{j-1}$.

3. By chain rule $H_{\infty}(\mathbf{Z}_1) \geq k_1$.

4. X is oNOSF implies Y_i uniform.

5. If $\mathbf{Y}_{i+1}, \ldots, \mathbf{Y}_i$ uniform, then output is uniform!

6. However, they may all be bad, so output is high entropy instead of uniform.

[eshan, mgurumuk, nomir]@cs.cornell.edu

