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Extractors vs. Condensers

Definition (Min-Entropy).The min-entropy of a dis-

tribution X is H∞(X) = − log(maxx∈support(X) Pr[X =
x]).
Definition (Smooth Min-Entropy). The ε-smooth

min-entropy of X is Hε
∞(X) = maxY:|X−Y|≤ε H∞(Y),

where |·| is the statistical distance.

Definition (Extractor). A function Ext : {0, 1}n →
{0, 1}m is a ε-extractor for a class X of distributions

over {0, 1}n if for all X ∈ X we have

|Ext(X) − Um| ≤ ε,

where Um the uniform distribution on {0, 1}m.

Weak source (60 / 100)
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Ext

Definition (Condenser).A function Cond : {0, 1}n →
{0, 1}m is a (kin, kout, ε)-condenser for a class of

sources X if for all X ∈ X we have H∞(X) ≥ kin

and

Hε
∞(Cond(X)) ≥ kout.
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The goal of condensers is to increase the entropy

rate
kin

n
≪

kout

m
and decrease the entropy gap

∆out = m − kout.

Remark. Condensers can exist for certain classes of

sources for which extractors provably can’t.

Adversarial Sources

Our main results are on two classes of sources

where the difference between them is the power

of the adversary.

Definition (Non-Oblivious Symbol Fixing Sources).A

(g, `)-NOSF source X = X1, . . . , X` is a distribution

on ({0, 1}n)` divided as ` blocks each of length n for

which g of the blocks are “good” (independent and uni-

form on {0, 1}n) and `−g blocks are “bad” (can depend

arbitrarily on the g good blocks).

Definition (online NOSFs). A (g, `)-oNOSF source

X = X1, . . . , X` is a (g, `)-NOSF source where the

bad blocks can only depend on the good blocks that

come before them.

Background

Aggarwal, Obremski, Ribeiro, Siniscalchi, and

Visconti (EUROCRYPT’20): extractors don’t

exist for (o)NOSFs with 99% good blocks.

Previously, the existence of condensers for

(o)NOSFs were completely unknown, even with

99% of blocks being good!

Result 1: Can’t condense NOSFs

Theorem. For all constant g, ` ∈ N, f : ({0, 1}n)` →
{0, 1}m there exists a (g, `)-NOSF X such that

Hε
∞(f (X)) ≤ g

` · m + O(1) with ε = 0.99.

Combined with the result of [AORSV’20], this

shows the adversary of NOSFs is too strong for de-

terministic extraction or condensing.

Result 2: Can’t condense oNOSFs
above rate 1/ b`/gc

Theorem. For all constant g, ` ∈ N, f : ({0, 1}n)` →
{0, 1}m there exists a (g, `)-oNOSF X such that

Hε
∞(f (X)) ≤ 1

b`/gc · m + O(1) with ε = 0.99.
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g) Our non-trivial condenser
A trivial condenser

Idea 1: Use dominating sets to prove
impossibility for (1, 2)-oNOSF

Goal: Construct a (1, 2)-oNOSF X = (X1, X2) s.t.
w.p. 0.99, f (X1, X2) ∈ D where |D| ≤ O

(
2m/2).

Lemma (Dominating set lemma). Let G = (U, V ) be

bipartite graph with U = [N ], V = [M ] s.t. for all

u ∈ U : deg(u) ≥
√

M . Then, there exists D ⊂ V s.t.

|D| = O(
√

M) and |Nbr(D)| ≥ 0.99N .

Let G = (U, V ) : U = {0, 1}n, V = {0, 1}m, with the

edge (u, v) ∈ G if there exists a s.t. f (u, a) = v.

Case 1: Exists u∗ ∈ U s.t. deg(u∗) ≤ 2m/2

Let X = (u∗, Un). With probability 1, f (X) ∈
Nbr(u∗) and |Nbr(u∗)| ≤ 2m/2.

Case 2: For all u ∈ U , deg(u) ≥ 2m/2, so use lemma

Exists D ⊂ V s.t. |D| ≤ O
(
2m/2) and |Nbr(D)| ≥

0.99 · 2n. Let X = (Un, Adv(Un)) where Adv(u) = a
s.t. f (u, a) ∈ D (if it exists). W.p. 0.99, f (X) ∈ D.

Open questions

Can these condensers be made explicit?

What’s the situation for other regimes, like

n = O(1) and increasing `?

Result 3: Can condense oNOSFs to
rate 1/ b`/gc

Theorem.For any constant g, ` ∈ N and ε, there exists

a condenser Cond : ({0, 1}n)` → {0, 1}m s.t. for any

(g, `)-oNOSF X we have Hε
∞(Cond(X)) ≥ 1

b`/mc · m −
O(log(m)) where m = Ω(n) and ε = Ω(m−1/4).
Corollary. For constant g, ` such that g > `/2, we can

condense (g, `)-oNOSFs to rate 1 − o(1).

Idea 2: Weaken adversary in later
blocks

Goal: Create a function Cond(x1, . . . , x`) that con-
denses to entropy rate 1 − o(1) when g > `/2.
Problem: The adversarial blocks with higher indices

are more “powerful” since they are able to depend

on more good blocks than earlier ones.

Solution: To weaken the bad blocks, we take pre-

fixes of geometrically decreasing length.

For i > g, let yi := xi[1] ◦ · · · ◦ xi[20`−i+1(log n)].
Let z1 = x1 ◦ · · · ◦ xg, z2 = yg+1 ◦ · · · ◦ y`.

Let Cond(x1, . . . , x`) = 2Ext(z1, z2).

X1 Xg· · · Xg+1 X`· · ·

Yg+1 Y`

Z1 Z2

2Ext

Idea 3: Use an output-light
two-source extractor

Definition (Output-light two-source extractor).

2Ext : {0, 1}n1+n2 → {0, 1}m is a R-output-light

(k1, k2, ε)-two-source extractor if for independent

(n1, k1)-source X1 and (n2, k2)-source X2:

|2Ext(X1, X2) − Um| ≤ ε

and for every w ∈ {0, 1}m we have
∣∣2Ext−1(w)

∣∣ ≤ R.

Goal: Condense any (g, `)-oNOSF source X with

g > `/2 to rate 1 − o(1).

Case 1: Xg+1, . . . , X` are bad

1. For the sake of contradiction, can’t condense, so

output is in some small set D with ε weight.

2. Implies many inputs to 2Ext with output in D.

3. By an averaging argument, exists an elt in D with

large preimage, contradicting output-lightness.

Case 2: Exists j > g s.t. Xj is uniform

1. g > `/2, so exists i ≤ g s.t. Xi is uniform.

2. Fix output of Yg+1, . . . , Yj−1.

3. By chain rule H∞(Z1) ≥ k1.

4. X is oNOSF implies Yj uniform.

5. If Yj+1, . . . , Yj uniform, then output is uniform!

6. However, they may all be bad, so output is high

entropy instead of uniform.
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