Condensing and Extracting Against Online Adversaries

Eshan Chattopadhyay Cornell University

Mohit Gurumukhani Cornell University

Noam Ringach Cornell University

Rocco Servedio Columbia University

Part 0: Introduction

 Useful for randomized algorithms, cryptography, distributed computing protocols, machine learning, etc.

- Useful for randomized algorithms, cryptography, distributed computing protocols, machine learning, etc.
- Most applications need high quality randomness.

- Useful for randomized algorithms, cryptography, distributed computing protocols, machine learning, etc.
- Most applications need high quality randomness.
- In practice, randomness is derived from nature and is of low quality.

Extractor

Weak source (60 / 100)

Uniform source (50 / 50)

Extractor

Definition (Extractor)

Ext : $\{0,1\}^n \to \{0,1\}^m$ is ε -extractor for class $\mathcal X$ if for all $\mathbf X \in \mathcal X$,

$$|\mathsf{Ext}(\mathbf{X}) - \mathsf{Uniform}_m| \leq \varepsilon,$$

| · | denotes statistical distance / total variation distance:

$$|\mathbf{A} - \mathbf{B}| = \max_{S \subset \Omega} |\Pr(\mathbf{A} \in S) - \Pr(\mathbf{B} \in S)| = \frac{1}{2} \|\mathbf{A} - \mathbf{B}\|_{1}$$

Single extractor for every

distribution?

Single extractor for every distribution?

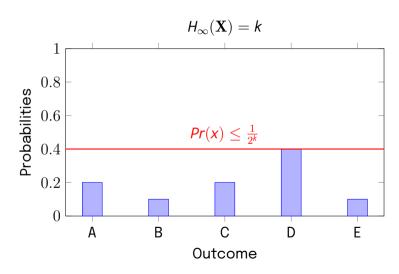
NO!

Single extractor for every distribution?

NO!

→ Distributions must have entropy

Min-entropy



Min-entropy

Definition (Min-entropy)

Min-entropy of source X:

$$H_{\infty}(\mathbf{X}) = -\log\left(\max_{\mathbf{x} \in \mathsf{support}(\mathbf{X})} \Pr(\mathbf{X} = \mathbf{x})\right)$$

Min-entropy

Definition (Min-entropy)

Min-entropy of source X:

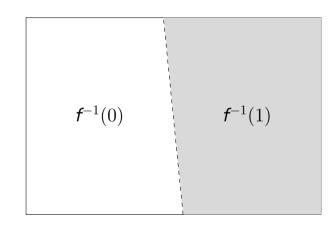
$$H_{\infty}(\mathbf{X}) = -\log\left(\max_{\mathbf{x} \in \mathsf{support}(\mathbf{X})} \Pr(\mathbf{X} = \mathbf{x})\right)$$

Definition (Smooth Min-entropy)

Smooth min-entropy of source X with parameter ε :

$$H_{\infty}^{\varepsilon}(\mathbf{X}) = \max_{\mathbf{Y}:|\mathbf{X}-\mathbf{Y}|<\varepsilon} H_{\infty}(\mathbf{Y})$$

NO!



NO!

Solution: Distributions are structured.

Seedless extractors: a brief history

Seedless extractors: a brief history

- Two independent sources [Chor-Goldreich'88, ..., Li'23].
- Sources generated by circuits / low complexity classes (applications to circuit lower bounds) [Trevisan Vadhan'00, ..., Viola'14, ...].
- Sources sampled by polynomials over large fields [Dvir Gabizon Wigderson'09, ...].
- Sources sampled by polynomials over F₂ [Chattopadhyay Goodman – Gurumukhani (CGG)'24].

Sometimes extractors don't exist

Sometimes extractors don't exist

• Extractors guarantee closeness to uniform distribution.

Sometimes extractors don't exist

- Extractors guarantee closeness to uniform distribution.
- Relax this: guarantee closeness to high entropy distribution.

Weak source (60 / 100)

Strong source (48 / 50)

Condenser

Cond : $\{0,1\}^n \to \{0,1\}^m$ is a $(k_{in},k_{out},\varepsilon)$ -condenser for class of distributions \mathcal{X} with entropy at least k_{in} if for all $\mathbf{X} \in \mathcal{X}$,

$$H_{\infty}^{\varepsilon}(\mathsf{Cond}(\mathbf{X})) \geq k_{out}$$

Condenser

Cond : $\{0,1\}^n \to \{0,1\}^m$ is a $(k_{in},k_{out},\varepsilon)$ -condenser for class of distributions \mathcal{X} with entropy at least k_{in} if for all $\mathbf{X} \in \mathcal{X}$,

$$H_{\infty}^{\varepsilon}(\mathsf{Cond}(\mathbf{X})) \geq k_{out}$$

• Care about increasing entropy rate:

$$\frac{k_{in}}{n}$$
 vs $\frac{k_{out}}{m}$

Condenser

Cond : $\{0,1\}^n \to \{0,1\}^m$ is a $(k_{in}, k_{out}, \varepsilon)$ -condenser for class of distributions \mathcal{X} with entropy at least k_{in} if for all $\mathbf{X} \in \mathcal{X}$,

$$H_{\infty}^{\varepsilon}(\mathsf{Cond}(\mathbf{X})) \geq k_{out}$$

Care about increasing entropy rate:

$$\frac{k_{in}}{n} \ll \frac{k_{out}}{m}$$

Condenser

Cond : $\{0,1\}^n \to \{0,1\}^m$ is a $(k_{in},k_{out},\varepsilon)$ -condenser for class of distributions \mathcal{X} with entropy at least k_{in} if for all $\mathbf{X} \in \mathcal{X}$,

$$H_{\infty}^{\varepsilon}(\mathsf{Cond}(\mathbf{X})) \geq k_{out}$$

Care about increasing entropy rate:

$$\frac{k_{in}}{n} \ll \frac{k_{out}}{m}$$

• Care about minimizing entropy gap:

$$\Delta_{out} = m - k_{out}$$

Simulating using only weak random source:

Simulating using only weak random source:

• Randomized algorithms with $poly(\Delta_{out})$ overhead [Zuckerman'95].

Simulating using only weak random source:

- Randomized algorithms with $\operatorname{poly}(\Delta_{out})$ overhead [Zuckerman'95].
- "One-shot simulations" for randomized protocols, cryptography, interactive proofs etc.

Simulating using only weak random source:

- Randomized algorithms with $poly(\Delta_{out})$ overhead [Zuckerman'95].
- "One-shot simulations" for randomized protocols, cryptography, interactive proofs etc.

Condensers can exist where extractors (provably) can't

Single condenser for every high min-entropy distribution?

Single condenser for every high min-entropy distribution?

NO!

Single condenser for every high min-entropy distribution?

NO!

→ Same solution: Distributions should be structured.

Seedless condensers: prior work

Seedless condensers: prior work

- Condensers for Chor-Goldreich (CG) sources and adversarial
 Chor-Coldreich (CG) sources [Doron Moshkovitz Oh Zuckerman'23].
- Improved Condensers for Chor-Goldreich Sources [Goodman Li Zuckerman'24]

Part 1: Models and Results

Oblivious Bit Fixing Sources (OBFs)

• ℓ bit input.

Oblivious Bit Fixing Sources (OBFs)

- ullet bit input.
- g good bits: uniform, $\ell-g$ bad bits: constants.

Oblivious Bit Fixing Sources (OBFs)

- ℓ bit input.
- g good bits: uniform, $\ell-g$ bad bits: constants.

PARITY extracts from $(1, \ell)$ -OBFs.

NOBFs

NOBFs

Non-Oblivious Bit Fixing Sources (NOBFs)

• g good bits: uniform, $\ell-g$ bad bits: arbitrary functions of good bits.



Kahn-Kalai-Linial'88, Ben-Or-Linial'89, Ajtai-Linial'93

• Can't extract from $\left(\ell - \frac{\ell}{\log(\ell)}, \ell\right)$ -NOBFs.

Kahn - Kalai - Linial'88, Ben-Or - Linial'89, Ajtai - Linial'93

- Can't extract from $\left(\ell \frac{\ell}{\log(\ell)}, \ell\right)$ -NOBFs.
- Can extract from $\left(\ell \frac{\ell}{\log^2(\ell)}, \ell\right)$ -NOBFs.

Kahn-Kalai-Linial'88, Ben-Or-Linial'89, Ajtai-Linial'93

- Can't extract from $\left(\ell \frac{\ell}{\log(\ell)}, \ell\right)$ -NOBFs.
- Can extract from $\left(\ell \frac{\ell}{\log^2(\ell)}, \ell\right)$ -NOBFs.

Ouestion

Can you condense from (g,ℓ) -NOBFs when $g<\ell-rac{\ell}{\log\ell}$?

Kahn - Kalai - Linial'88, Ben-Or - Linial'89, Ajtai - Linial'93

- Can't extract from $\left(\ell \frac{\ell}{\log(\ell)}, \ell\right)$ -NOBFs.
- Can extract from $\left(\ell \frac{\ell}{\log^2(\ell)}, \ell\right)$ -NOBFs.

Theorem (Chattopadhyay - Gurumukhani - R (CGR)'24)

For constant α , **can't** condense $((1-\alpha)\cdot \ell,\ell)$ -NOBFs beyond **rate 1 — \alpha**.

NOSFs

NOSFs

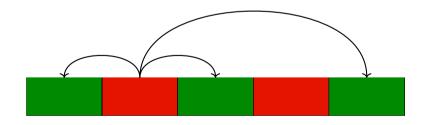
Non-Oblivious Symbol Fixing Sources (NOSFs)

• ℓ blocks of length n each.

NOSFs

Non-Oblivious Symbol Fixing Sources (NOSFs)

- ℓ blocks of length n each.
- g good blocks: uniform, $\ell-g$ bad blocks: arbitrary functions of good blocks.



Aggarwal – Obremski – Ribeiro – Siniscalchi – Visconti (AORSV)'20

Can't extract from $(0.99\ell, \ell)$ -NOSFs.

Aggarwal – Obremski – Ribeiro – Siniscalchi – Visconti (AORSV)'20

Can't extract from $(0.99\ell,\ell)$ -NOSFs.

Question

Can you condense from (g, ℓ) -NOSFs?

Aggarwal – Obremski – Ribeiro – Siniscalchi – Visconti (AORSV)'20

Can't extract from $(0.99\ell,\ell)$ -NOSFs.

Theorem (CGR'24)

Can't condense (g, ℓ) -NOSFs beyond **rate** g/ℓ .

oNOSFs

oNOSFs

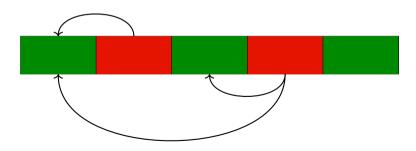
Online Non-Oblivious Symbol Fixing Sources (oNOSFs)

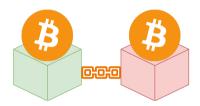
• g good blocks: uniform, $\ell-g$ bad blocks: arbitrary functions of good blocks **that appear before it**.

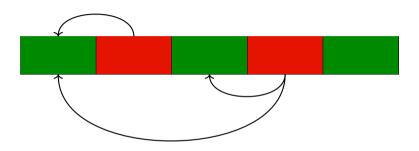
oNOSFs

Online Non-Oblivious Symbol Fixing Sources (oNOSFs)

• g good blocks: uniform, $\ell-g$ bad blocks: arbitrary functions of good blocks **that appear before it**.







[AORSV'20]

Can't extract from $(0.99\ell, \ell)$ -oNOSFs.

[AORSV'20]

Can't extract from $(0.99\ell,\ell)$ -oNOSFs.

Question

Can you condense from (g, ℓ) -oNOSFs?

[AORSV'20]

Can't extract from $(0.99\ell, \ell)$ -oNOSFs.

Theorem (CGR'24, CGRS'25)

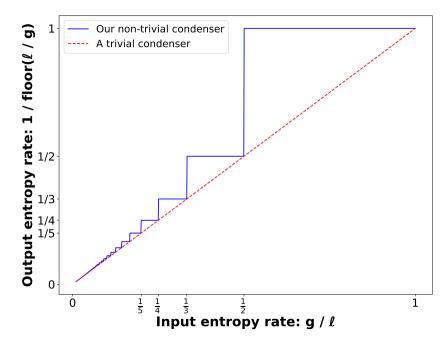
Can't condense (g, ℓ) -oNOSFs beyond rate $\frac{1}{\lfloor \ell/g \rfloor}$.

[AORSV'20]

Can't extract from $(0.99\ell, \ell)$ -oNOSFs.

Theorem (CGR'24, CGRS'25)

Can't condense (g,ℓ) -oNOSFs beyond rate $\frac{1}{\lfloor \ell/g \rfloor}$. Can condense (g,ℓ) -oNOSFs to rate $\frac{1}{\lfloor \ell/g \rfloor}$.



Extracting / Condensing from oNOSFs

Corollary (Sharp threshold at $\boldsymbol{g}=\ell/2$)

Can't condense $(0.5\ell,\ell)$ -oNOSFs beyond **rate** 1/2 - Impossibility.

Can condense $(0.51\ell,\ell)$ -oNOSFs to **rate** 0.99 - Possibility.

Part 2: Possibility

Theorem (Condensing uniform oNOSF sources)

For $g \ge 0.51\ell$, large constant block length n, and ℓ increasing, we can condense any oNOSF source to entropy rate 0.99.

Theorem (Condensing uniform oNOSF sources)

```
For g \geq 0.51\ell, \ell = \Omega(\log(1/\varepsilon)), and n = 10^4, exists \mathrm{Cond}: \{0,1\}^{\ell n} \to \{0,1\}^m s.t. for any (g,\ell)-oNOSF \mathbf{X}, \mathbf{H}_{\infty}^{\varepsilon}(\mathrm{Cond}(\mathbf{X})) \geq 0.99m where m = \Omega(\ell + \log(1/\varepsilon)).
```

Theorem (Condensing uniform oNOSF sources)

For $g \geq 0.51\ell$, $\ell = \Omega(\log(1/\varepsilon))$, and $n = 10^4$, exists $\mathrm{Cond}: \{0,1\}^{\ell n} \to \{0,1\}^m$ s.t. for any (g,ℓ) -oNOSF \mathbf{X} , $\mathbf{H}^{\varepsilon}_{\infty}(\mathrm{Cond}(\mathbf{X})) \geq 0.99m$ where $m = \Omega(\ell + \log(1/\varepsilon))$.

Theorem (Condensing low-entropy oNOSF sources)

For $g \ge 0.51\ell$, we can similarly condense oNOSF sources with logarithmic min-entropy.

Theorem (Condensing uniform oNOSF sources)

For $g \geq 0.51\ell$, $\ell = \Omega(\log(1/\varepsilon))$, and $n = 10^4$, exists $\mathrm{Cond}: \{0,1\}^{\ell n} \to \{0,1\}^m$ s.t. for any (g,ℓ) -oNOSF \mathbf{X} , $\mathbf{H}^{\varepsilon}_{\infty}(\mathrm{Cond}(\mathbf{X})) \geq 0.99m$ where $m = \Omega(\ell + \log(1/\varepsilon))$.

Theorem (Condensing low-entropy oNOSF sources)

For $g \geq 0.51\ell$, $n = \operatorname{polylog}(\ell/\varepsilon)$ exists $\operatorname{Cond}: (\{0,1\}^n)^\ell \to \{0,1\}^m$ s.t. for any low-entropy (g,ℓ) -oNOSF $\mathbf X$ with $k = \Omega(\log(\ell/\varepsilon))$, $H^\varepsilon_\infty(\operatorname{Cond}(\mathbf X)) \geq m - \operatorname{O}(m/\log m) - \operatorname{O}(\log(1/\varepsilon))$ where $m = \Omega(k)$.

Theorem (Condensing uniform oNOSF sources)

For $g \geq 0.51\ell$, $\ell = \Omega(\log(1/\varepsilon))$, and $n = 10^4$, exists $\mathrm{Cond}: \{0,1\}^{\ell n} \to \{0,1\}^m$ s.t. for any (g,ℓ) -oNOSF \mathbf{X} , $\mathbf{H}^\varepsilon_\infty(\mathbf{Cond}(\mathbf{X})) \geq 0.99m$ where $m = \Omega(\ell + \log(1/\varepsilon))$.

Theorem (Condensing low-entropy oNOSF sources)

For $g \geq 0.51\ell$, $n = \text{polylog}(\ell/\varepsilon)$ exists Cond : $(\{0,1\}^n)^\ell \to \{0,1\}^m$ s.t. for any low-entropy (g,ℓ) -oNOSF X with $k = \Omega(\log(\ell/\varepsilon))$, $H_{\infty}^{\epsilon}(\text{Cond}(X)) \geq m - O(m/\log m) - O(\log(1/\varepsilon))$ where $m = \Omega(k)$.

Theorem (Extend AORSV'20 result)

Transform low-entropy (g,ℓ) -oNOSFs \rightarrow uniform $(0.99g,\ell)$ -oNOSFs.

Theorem (Condensing uniform oNOSF sources)

```
For g \geq 0.51\ell, \ell = \Omega(\log(1/\varepsilon)), and n = 10^4, exists Cond : \{0,1\}^{\ell n} \to \{0,1\}^m s.t. for any (g,\ell)-oNOSF \mathbf{X}, \mathbf{H}_{\infty}^{\varepsilon}(\mathbf{Cond}(\mathbf{X})) \geq \mathbf{0.99m} where m = \Omega(\ell + \log(1/\varepsilon)).
```

Does a random function work?

Theorem (Condensing uniform oNOSF sources)

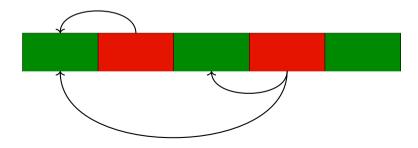
```
For g \geq 0.51\ell, \ell = \Omega(\log(1/\varepsilon)), and n = 10^4, exists \mathrm{Cond}: \{0,1\}^{\ell n} \to \{0,1\}^m s.t. for any (g,\ell)-oNOSF \mathbf{X}, \mathbf{H}^{\varepsilon}_{\infty}(\mathrm{Cond}(\mathbf{X})) \geq 0.99m where m = \Omega(\ell + \log(1/\varepsilon)).
```

Does a random function work?

No!

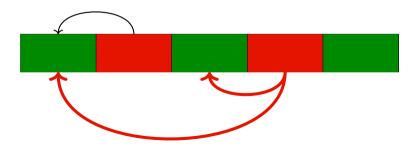
Theorem (Condensing uniform oNOSF sources)

For $g \geq 0.51\ell$, $\ell = \Omega(\log(1/\varepsilon))$, and $n = 10^4$, exists Cond : $\{0,1\}^{\ell n} \to \{0,1\}^m$ s.t. for any (g,ℓ) -oNOSF \mathbf{X} , $\mathbf{H}^{\varepsilon}_{\infty}(\mathbf{Cond}(\mathbf{X})) \geq \mathbf{0.99m}$ where $m = \Omega(\ell + \log(1/\varepsilon))$.



Theorem (Condensing uniform oNOSF sources)

For $g \geq 0.51\ell$, $\ell = \Omega(\log(1/\varepsilon))$, and $n = 10^4$, exists Cond : $\{0,1\}^{\ell n} \to \{0,1\}^m$ s.t. for any (g,ℓ) -oNOSF \mathbf{X} , $\mathbf{H}_{\infty}^{\varepsilon}(\mathbf{Cond}(\mathbf{X})) \geq \mathbf{0.99m}$ where $m = \Omega(\ell + \log(1/\varepsilon))$.



Problem

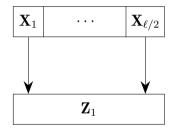
A random function doesn't condense because the adversary has too much power in latter blocks.

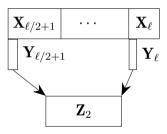
Solution

Take only first bit of latter half of blocks to weaken the adversary.

Solution

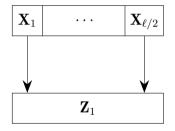
Take only first bit of latter half of blocks to weaken the adversary.

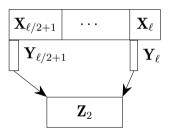




Solution

Take only first bit of latter half of blocks to weaken the adversary.

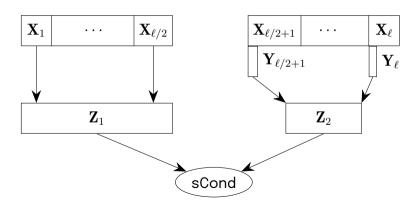


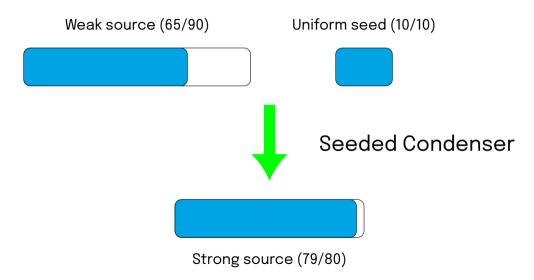


Now a random function works!

Solution

Take only first bit of latter half of blocks to weaken the adversary.





Formal definition

A function sCond : $\{0,1\}^n \times \{0,1\}^d \to \{0,1\}^m$ is a (k,ε) -seeded condenser for a class of sources \mathcal{X} if for all $\mathbf{X} \in \mathcal{X}$,

$$H_{\infty}^{\varepsilon}(\mathsf{sCond}(\mathbf{X},\mathbf{U}_d)) \geq k$$

Formal definition

A function sCond : $\{0,1\}^n \times \{0,1\}^d \to \{0,1\}^m$ is a (k,ε) -seeded condenser for a class of sources \mathcal{X} if for all $\mathbf{X} \in \mathcal{X}$,

$$H_{\infty}^{\varepsilon}(\mathsf{sCond}(\mathbf{X},\mathbf{U}_d)) \geq k$$

Theorem (Good seeded condensers exist)

Seeded condensers with logarithmic seed length and linear output length exist.

Formal definition

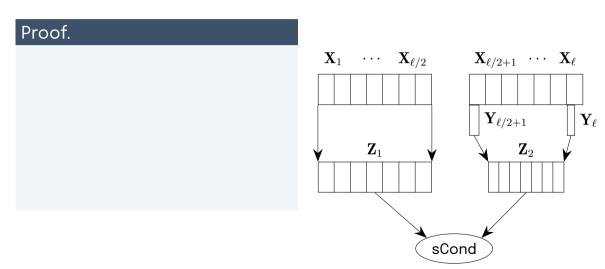
A function sCond : $\{0,1\}^n \times \{0,1\}^d \to \{0,1\}^m$ is a (k,ε) -seeded condenser for a class of sources \mathcal{X} if for all $\mathbf{X} \in \mathcal{X}$,

$$H_{\infty}^{\varepsilon}(\mathsf{sCond}(\mathbf{X},\mathbf{U}_d)) \geq k$$

Theorem (Good seeded condensers exist)

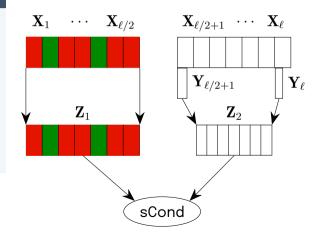
For all d, ε s.t. $d \ge \log(\ell n/\varepsilon) + O(1)$ and $m = 0.01\ell n + d + \log(1/\varepsilon) + O(1)$, exists sCond : $\{0,1\}^{\ell n/2} \times \{0,1\}^d \to \{0,1\}^m$ s.t. for all $\mathbf{X} \sim \{0,1\}^{\ell n/2}$ with $H_{\infty}(\mathbf{X}) \ge 0.01\ell n$, we have

$$H_{\infty}^{\varepsilon}(\mathsf{sCond}(\mathbf{X}, \mathbf{U}_d)) \geq 0.01 \ell n + d$$

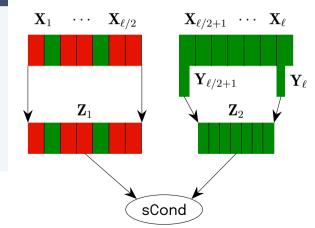


Proof.

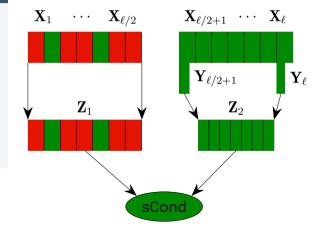
• $g \geq 0.51\ell \implies$ at least 0.01ℓ blocks in $\mathbf{Z}_1 \sim \{0,1\}^{\ell n/2}$ are good.



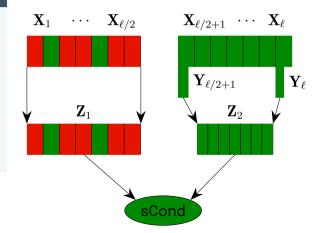
- $g \ge 0.51\ell \implies$ at least 0.01ℓ blocks in $\mathbf{Z}_1 \sim \{0,1\}^{\ell n/2}$ are good.
- Pretend $\mathbf{Z}_2 \sim \{0,1\}^{\ell/2}$ is uniform.



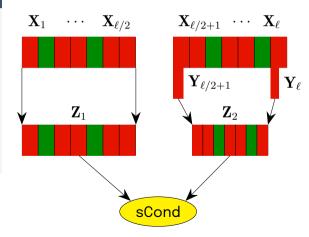
- $g \ge 0.51\ell \implies$ at least 0.01ℓ blocks in $\mathbf{Z}_1 \sim \{0,1\}^{\ell n/2}$ are good.
- Pretend $\mathbf{Z}_2 \sim \{0,1\}^{\ell/2}$ is uniform.
- sCond requirements satisfied!



- $g \ge 0.51\ell \implies$ at least 0.01ℓ blocks in $\mathbf{Z}_1 \sim \{0,1\}^{\ell n/2}$ are good.
- Pretend $\mathbf{Z}_2 \sim \{0,1\}^{\ell/2}$ is uniform.
- sCond requirements satisfied!
- ullet $H_{\infty}^{arepsilon_{ ext{sCond}}}(ext{sCond}(\mathbf{Z}_1,\mathbf{U}_{\ell/2})) \geq k_{ ext{sCond}}.$



- $g \ge 0.51\ell \implies$ at least 0.01ℓ blocks in $\mathbf{Z}_1 \sim \{0,1\}^{\ell n/2}$ are good.
- Pretend $\mathbf{Z}_2 \sim \{0,1\}^{\ell/2}$ is uniform.
- sCond requirements satisfied!
- $H_{\infty}^{\varepsilon_{\mathsf{sCond}}}(\mathsf{sCond}(\mathbf{Z}_1,\mathbf{U}_{\ell/2})) \geq k_{\mathsf{sCond}}.$
- BUT \mathbf{Z}_2 might have 0.49ℓ bad bits!



Adversary can't make things too bad

Adversary can't make things too bad

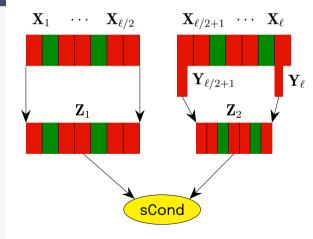
Lemma

Let $\mathbf{X} \sim \{0,1\}^n$ and sCond be s.t. $H_{\infty}^{\epsilon_{\mathsf{sCond}}}(\mathsf{sCond}(\mathbf{X},\mathbf{U}_d)) \geq k_{\mathsf{sCond}}$. Let \mathbf{U}_d' be \mathbf{U}_d except an adversary controls some b bits. Then,

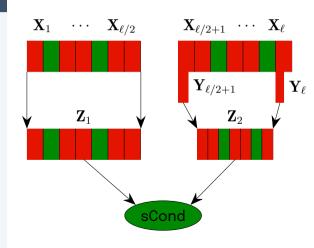
$$H_{\infty}^{\varepsilon'}(\mathsf{sCond}(\mathbf{X},\mathbf{U}_d')) \geq k_{\mathsf{sCond}} - b$$

where $\varepsilon' = \varepsilon_{sCond} \cdot 2^b$.

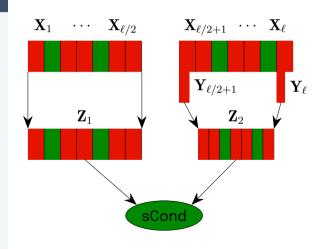
- $g \ge 0.51\ell \implies$ at least 0.01ℓ blocks in $\mathbf{Z}_1 \sim \{0,1\}^{\ell n/2}$ are good.
- Pretend $\mathbf{Z}_2 \sim \{0,1\}^{\ell/2}$ is uniform.
- sCond requirements satisfied!
- $H_{\infty}^{\varepsilon_{\mathsf{sCond}}}(\mathsf{sCond}(\mathbf{Z}_1,\mathbf{U}_{\ell/2})) \geq k_{\mathsf{sCond}}$.
- BUT \mathbf{Z}_2 might have 0.49ℓ bad bits!



- $g \ge 0.51\ell \implies$ at least 0.01ℓ blocks in $\mathbf{Z}_1 \sim \{0,1\}^{\ell n/2}$ are good.
- Pretend $\mathbf{Z}_2 \sim \{0,1\}^{\ell/2}$ is uniform.
- sCond requirements satisfied!
- ullet $H_{\infty}^{arepsilon_{ ext{sCond}}}(ext{sCond}(\mathbf{Z}_1,\mathbf{U}_{\ell/2})) \geq k_{ ext{sCond}}.$
- BUT \mathbf{Z}_2 might have 0.49ℓ bad bits!
- Save sCond using lemma that adversary can't be too bad.



- $g \ge 0.51\ell \implies$ at least 0.01ℓ blocks in $\mathbf{Z}_1 \sim \{0,1\}^{\ell n/2}$ are good.
- Pretend $\mathbf{Z}_2 \sim \{0,1\}^{\ell/2}$ is uniform.
- sCond requirements satisfied!
- $H_{\infty}^{\varepsilon_{\mathsf{sCond}}}(\mathsf{sCond}(\mathbf{Z}_1,\mathbf{U}_{\ell/2})) \geq k_{\mathsf{sCond}}.$
- BUT \mathbf{Z}_2 might have 0.49ℓ bad bits!
- Save sCond using lemma that adversary can't be too bad.
- $H_{\infty}^{\varepsilon'}(\operatorname{sCond}(\mathbf{Z}_1, \mathbf{Z}_2) \ge k_{\operatorname{sCond}} 0.49\ell$ with $\varepsilon' = \varepsilon_{\operatorname{sCond}} \cdot 2^{0.49\ell}$.



Proof.

- $g \ge 0.51\ell \implies$ at least 0.01ℓ blocks in $\mathbf{Z}_1 \sim \{0,1\}^{\ell n/2}$ are good.
- Pretend $\mathbf{Z}_2 \sim \{0,1\}^{\ell/2}$ is uniform.
- sCond requirements satisfied!
- $H_{\infty}^{\varepsilon_{\mathsf{sCond}}}(\mathsf{sCond}(\mathbf{Z}_1,\mathbf{U}_{\ell/2})) \geq k_{\mathsf{sCond}}$.
- BUT \mathbf{Z}_2 might have 0.49ℓ bad bits!
- Save sCond using lemma that adversary can't be too bad.
- $H_{\infty}^{\varepsilon'}(\operatorname{sCond}(\mathbf{Z}_1, \mathbf{Z}_2) \geq k_{\operatorname{sCond}} 0.49\ell$ with $\varepsilon' = \varepsilon_{\operatorname{sCond}} \cdot 2^{0.49\ell}$.

Proof.

• To get error ε , need $\varepsilon_{\text{scond}} = \varepsilon \cdot 2^{-0.49\ell}$.

Proof.

- $g \ge 0.51\ell \implies$ at least 0.01ℓ blocks in $\mathbf{Z}_1 \sim \{0,1\}^{\ell n/2}$ are good.
- Pretend $\mathbf{Z}_2 \sim \{0,1\}^{\ell/2}$ is uniform.
- sCond requirements satisfied!
- ullet $H_{\infty}^{arepsilon_{ ext{sCond}}}(ext{sCond}(\mathbf{Z}_1,\mathbf{U}_{\ell/2})) \geq k_{ ext{sCond}}.$
- BUT \mathbf{Z}_2 might have 0.49ℓ bad bits!
- Save sCond using lemma that adversary can't be too bad.
- $H_{\infty}^{\varepsilon'}(\operatorname{sCond}(\mathbf{Z}_1, \mathbf{Z}_2) \geq k_{\operatorname{sCond}} 0.49\ell$ with $\varepsilon' = \varepsilon_{\operatorname{sCond}} \cdot 2^{0.49\ell}$.

- To get error ε , need $\varepsilon_{\mathsf{sCond}} = \varepsilon \cdot 2^{-0.49\ell}$.
- For sCond to exist, need $0.5\ell > \log(\ell n/\varepsilon_{\text{sCond}}) + O(1)$

Proof.

- $g \ge 0.51\ell \implies$ at least 0.01ℓ blocks in $\mathbf{Z}_1 \sim \{0,1\}^{\ell n/2}$ are good.
- Pretend $\mathbf{Z}_2 \sim \{0,1\}^{\ell/2}$ is uniform.
- sCond requirements satisfied!
- $H_{\infty}^{\varepsilon_{\mathsf{sCond}}}(\mathsf{sCond}(\mathbf{Z}_1,\mathbf{U}_{\ell/2})) \geq k_{\mathsf{sCond}}.$
- BUT \mathbf{Z}_2 might have 0.49ℓ bad bits!
- Save sCond using lemma that adversary can't be too bad.
- $H_{\infty}^{\varepsilon'}(\operatorname{sCond}(\mathbf{Z}_1, \mathbf{Z}_2) \geq k_{\operatorname{sCond}} 0.49\ell$ with $\varepsilon' = \varepsilon_{\operatorname{sCond}} \cdot 2^{0.49\ell}$.

- To get error ε , need $\varepsilon_{\mathsf{sCond}} = \varepsilon \cdot 2^{-0.49\ell}$.
- For sCond to exist, need $0.5\ell \geq \log(\ell n/\varepsilon_{\rm sCond}) + {\it O}(1)$
- So require $\varepsilon \geq 2^{-0.01\ell}$.

Proof.

- $g \ge 0.51\ell \implies$ at least 0.01ℓ blocks in $\mathbf{Z}_1 \sim \{0,1\}^{\ell n/2}$ are good.
- Pretend $\mathbf{Z}_2 \sim \{0,1\}^{\ell/2}$ is uniform.
- sCond requirements satisfied!
- $H^{\varepsilon_{\mathsf{sCond}}}_{\infty}(\mathsf{sCond}(\mathbf{Z}_1,\mathbf{U}_{\ell/2})) \geq k_{\mathsf{sCond}}$.
- BUT \mathbf{Z}_2 might have 0.49ℓ bad bits!
- Save sCond using lemma that adversary can't be too bad.
- $H_{\infty}^{\varepsilon'}(\operatorname{sCond}(\mathbf{Z}_1, \mathbf{Z}_2) \ge k_{\operatorname{sCond}} 0.49\ell$ with $\varepsilon' = \varepsilon_{\operatorname{sCond}} \cdot 2^{0.49\ell}$.

- To get error ε , need $\varepsilon_{\mathsf{sCond}} = \varepsilon \cdot 2^{-0.49\ell}$.
- For sCond to exist, need $0.5\ell \ge \log(\ell n/\varepsilon_{\text{sCond}}) + O(1)$
- So require $\varepsilon > 2^{-0.01\ell}$.
- sCond outputs $m = 0.01 \ell n + O(1)$ bits with entropy $m O(\ell)$.

Proof.

- $g \ge 0.51\ell \implies$ at least 0.01ℓ blocks in $\mathbf{Z}_1 \sim \{0,1\}^{\ell n/2}$ are good.
- Pretend $\mathbf{Z}_2 \sim \{0,1\}^{\ell/2}$ is uniform.
- sCond requirements satisfied!
- $H_{\infty}^{\varepsilon_{\mathsf{sCond}}}(\mathsf{sCond}(\mathbf{Z}_1,\mathbf{U}_{\ell/2})) \geq k_{\mathsf{sCond}}$.
- BUT \mathbf{Z}_2 might have 0.49ℓ bad bits!
- Save sCond using lemma that adversary can't be too bad.
- $H_{\infty}^{\varepsilon'}(\operatorname{sCond}(\mathbf{Z}_1, \mathbf{Z}_2) \ge k_{\operatorname{sCond}} 0.49\ell$ with $\varepsilon' = \varepsilon_{\operatorname{sCond}} \cdot 2^{0.49\ell}$.

- To get error ε , need $\varepsilon_{\mathsf{sCond}} = \varepsilon \cdot 2^{-0.49\ell}$.
- For sCond to exist, need $0.5\ell \ge \log(\ell n/\varepsilon_{\text{sCond}}) + O(1)$
- So require $\varepsilon > 2^{-0.01\ell}$.
- sCond outputs $m = 0.01 \ell n + O(1)$ bits with entropy $m O(\ell)$.
- So for large const n, get entropy rate $\frac{m-O(\ell)}{m} \ge 0.99$.

Condensing from oNOSFs

Corollary (Sharp threshold at $m{g}=\ell/2$)

Can't condense $(\ell/2,\ell)$ -oNOSFs beyond **rate** 1/2 - Impossibility.

Can condense $(0.51\ell,\ell)$ -oNOSFs to **rate** 0.99 - Possibility. \checkmark

Part 3: Future Directions

• Explicit condensers for oNOSFs with constant block length?

- Explicit condensers for oNOSFs with constant block length?
- Our condensers (explicit and existential) have super-constant output entropy gap. Is constant possible (for any values of ℓ and n)?

- Explicit condensers for oNOSFs with constant block length?
- Our condensers (explicit and existential) have super-constant output entropy gap. Is constant possible (for any values of ℓ and n)?
- Construct condensers for oNOBFs (online NOBFs).

- Explicit condensers for oNOSFs with constant block length?
- Our condensers (explicit and existential) have super-constant output entropy gap. Is constant possible (for any values of ℓ and n)?
- Construct condensers for oNOBFs (online NOBFs).

