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Randomness in computation

e Useful for randomized algorithms, cryptography, distributed computing
protocols, machine learning, etc.

® Most applications need high quality randomness.
® |n practice, randomness is derived from nature and is of low quality.
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Extractor

Definition (Extractor)

Ext : {0,1}" — {0, 1} is e-extractor for class X if forall X € X,

|Ext(X) — Uniform,,| < ¢,

| - | denotes statistical distance / total variation distance:

1
A —B| = max|Pr (A €S)— Pr(BeS) =5 |A—B|,
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distribution?

NO!

— Distributions must have entropy
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Definition (Min-entropy)

Min-entropy of source X:

Ho(X) = —log < max Pr(X = x))

xesupport(X)



Min-entropy

Definition (Min-entropy)

Min-entropy of source X:

Ho(X) = —log < max Pr(X = x))

xesupport(X)

Definition (Smooth Min-entropy)

Smooth min-entropy of source X with parameter ¢:

H(X) = | max_ Hao(Y)
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Single extractor for every high
min-entropy distribution?

NO!

Solution: Distributions are structured.
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Seedless extractors: a brief history

® Two independent sources [ Chor - Goldreich’88, ..., Li'23].

® Sources generated by circuits / low complexity classes (applications to
circuit lower bounds) [ Trevisan - Vadhan’00, .., Viola'l4, .. ].

® Sources sampled by polynomials over large fields [ Dvir— Gabizon -
Wigderson’09, ... ].

® Sources sampled by polynomials over I, [ Chattopadhyay —
Goodman — Gurumukhani (CGG)'24 ].
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Sometimes extractors don’t exist

|
® Extractors guarantee closeness to uniform distribution.
® Relax this: guarantee closeness to high entropy distribution.
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Weak source (60 / 100)

Condenser

Strong source (48 / 50)
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Cond : {0,1}" — {0,1}™is a (kin, kout, €)-condenser for class of distributions
X with entropy at least k;, if for all X € X,

Haoo(cond(X)) Z kout
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Condenser

Cond : {0,1}" — {0,1}™is a (kin, kout, €)-condenser for class of distributions
X with entropy at least k;, if for all X € X,

HEOO(COnd(X)) Z kout

e Care about increasing entropy rate:

ki kout
S
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Cond : {0,1}" — {0,1}™is a (kin, kout, €)-condenser for class of distributions
X with entropy at least k, if forall X € X,

H: (Cond(X)) > kout

® Care about increasing entropy rate:
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Condenser

Condenser

Cond : {0,1}" — {0,1}™is a (kin, kout, €)-condenser for class of distributions
X with entropy at least k, if forall X € X,

H: (Cond(X)) > kout

® Care about increasing entropy rate:
ki < kout

® Care about minimizing entropy gap:

Aout =m— kout
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Condensing is useful

|
Simulating using only weak random source:

¢ Randomized algorithms with poly(A,,:) overhead [ Zuckerman’95 ].

® “One-shot simulations” for randomized protocols, cryptography,
interactive proofs etc.

|
Condensers can exist where extractors (provably) can’t
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Single condenser for every high
min-entropy distribution?

NO!

— Same solution: Distributions should be
structured.



Seedless condensers: prior work



Seedless condensers: prior work

® Condensers for Chor-Goldreich (CG) sources and adversarial
Chor-Coldreich (CG) sources [ Doron - Moshkovitz- Oh - Zuckerman’23 ].

® Improved Condensers for Chor-Goldreich Sources [ Goodman - Li -
Zuckerman’24 ]



Part 1: Models and Results
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OBFs
Oblivious Bit Fixing Sources (OBFs)

e /bitinput.

® g good bits: uniform, ¢/ — g bad bits: constants.

-
PARITY extracts from (1, ¢)-OBFs.
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NOBFs
Non-Oblivious Bit Fixing Sources (NOBFs)

® g good bits: uniform, / — g bad bits: arbitrary functions of good bits.
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Kahn - Kalai-Linial’'88, Ben-Or-Linial’89, Ajtai-Linial’93

e Can’t extract from (€ 5 (2) €> -NOBFs.

® Can extract from (6 W’é) -NOBFs.

Question

Can you condense from (g, ¢)-NOBFs when g < ¢ — 1oge



Extracting / Condensing from NOBFs

Kahn - Kalai- Linial’'88, Ben-Or-Linial’89, Ajtai-Linial'93

e Can’t extract from (€ — @, €> -NOBFs.

e Can extract from (6 — @, 6)—NOBFS.

Theorem (Chattopadhyay - Gurumukhani-R (CGR)’24)

For constant «, can’t condense ((1 — «) - ¢, {)-NOBFs beyond rate 1 — c.
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Non-Oblivious Symbol Fixing Sources (NOSFs)

¢ /blocks of length n each.

® g good blocks: uniform, ¢/ — g bad blocks: arbitrary functions of good
blocks.
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Extracting / Condensing from NOSFs

Aggarwal - Obremski - Ribeiro - Siniscalchi - Visconti (AORSV)’20

Can’t extract from (0.99¢, /)-NOSFs.

Theorem (CGR'24)
Can’t condense (g, /)-NOSFs beyond rate g/¥.
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blocks that appear before it.



oNOSFs = Blockchain



oNOSFs = Blockchain



oNOSFs = Blockchain




oNOSFs = Blockchain

) ) &

\/m.\im\/




oNOSFs = Blockchain

B

he

0.0 0.



oNOSFs = Blockchain

0000 0



oNOSFs = Blockchain
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Extracting / Condensing from oNOSFs

[AORSV'20]

Can’t extract from (0.99¢, ¢)-oNOSFs.

Theorem (CGR'24, CGRS’25)
Can’t condense (g, {)-oNOSFs beyond rate

_1
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Extracting / Condensing from oNOSFs

[AORSV’'20]
Can’t extract from (0.99¢, ¢)-oNOSFs.

‘

Theorem (CGR'24, CGRS’25)

Can’t condense (g, {)-oNOSFs beyond rate
Can condense (g, {)-oNOSFs to rate ——

Le/gl
L‘f/ 1



1/ floor(Z / g)

Output entropy rate

1/21

1/3

1/41
1/54

1 —— Our non-trivial condenser

----- A trivial condenser

0 I 1 1 1
5 3
1

3 2
nput entropy rate: g/ ¢/



Extracting / Condensing from oNOSFs

Corollary (Sharp threshold at g = £/2)

Can’t condense (0.5¢, ¢)-oNOSFs beyond rate 1/2 - Impossibility.
Can condense (0.51¢, ¢)-oNOSFs to rate 0.99 - Possibility.



Part 2: Possibility




Condensers for (g, /)-oNOSF sources

Theorem (Condensing uniform oNOSF sources)

For g > 0.514, large constant block length n, and ¢ increasing, we can
condense any oNOSF source to entropy rate 0.99.
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s.t. for any (g, {)-oNOSF X, H5_(Cond(X)) > 0.99m where
m = Q(¢ +log(1/e)).
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For g > 0.51¢, ¢ = Q(log(1/¢)), and n = 10*, exists Cond : {0, 1}" — {0,1}™
s.t. for any (g, {)-oNOSF X, H5_(Cond(X)) > 0.99m where
m = Q(¢ +log(1/e)).

Theorem (Condensing low-entropy oNOSF sources)

For g > 0.51¢, we can similarly condense oNOSF sources with logarithmic
min-entropy.



Condensers for (g, /)-oNOSF sources

Theorem (Condensing uniform oNOSF sources)

For g > 0.51¢, ¢ = Q(log(1/¢)), and n = 10*, exists Cond : {0, 1}" — {0,1}™
s.t. for any (g, {)-oNOSF X, H5_(Cond(X)) > 0.99m where
m = Q(¢ +log(1/e)).

Theorem (Condensing low-entropy oNOSF sources)

For g > 0.514, n = polylog(¢/¢) exists Cond : ({0,1}")¢ — {0,1}™ s.t. for any
low-entropy (g, ()-oNOSF X with k = Q(log(¢/¢)),
H:_(Cond(X)) > m — O(m/logm) — O(log(1/e)) where m = Q(k).



Condensers for (g, /)-oNOSF sources

Theorem (Condensing uniform oNOSF sources)

Forg > 0.51¢, ¢ = Q(log(1/¢)), and n = 10*, exists Cond : {0, 1}" — {0,1}™
s.t. for any (g, {)-oNOSF X, H5_(Cond(X)) > 0.99m where
m = Q(¢ +log(1/e)).

Theorem (Condensing low-entropy oNOSF sources)

For g > 0.514, n = polylog(¢/c) exists Cond : ({0,1}")* — {0,1}™ s.t. for any
low-entropy (g, ()-oNOSF X with k = Q(log(¢/¢)),
He_(Cond(X)) > m — O(m/logm) — O(log(1/e)) where m = Q(k).

Theorem (Extend AORSV’20 result)
Transform low-entropy (g, ¢)-oNOSFs — uniform (0.99g, ¢)-oNOSFs.
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Condensers for (g, /)-oNOSF sources

Theorem (Condensing uniform oNOSF sources)

For g > 0.51¢, ¢ = Q(log(1/¢)), and n = 10*, exists Cond : {0, 1}" — {0,1}™
s.t. for any (g, {)-oNOSF X, H5_(Cond(X)) > 0.99m where
m = Q(¢ +log(1/e)).

Does a random function work?

No!
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Condensers for (g, /)-oNOSF sources

Theorem (Condensing uniform oNOSF sources)

Forg > 0.51¢4, ¢ = Q(log(1/¢)), and n = 10*, exists Cond : {0, 1}" — {0,1}™
s.t. for any (g, {)-oNOSF X, H5_(Cond(X)) > 0.99m where
m = Q(¢ +log(1/e)).




Constructing the condenser

Problem

A random function doesn’t condense because the adversary has too much
power in latter blocks.

X e X2 Xejpg1| o Xy
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Take only first bit of latter half of blocks to weaken the adversary.
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Now a random function works!



Constructing the condenser

Solution

Take only first bit of latter half of blocks to weaken the adversary.

Xy e X2 Xpjoq1| - Xy

Y211 Y,

Zl Z2
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Weak source (65/90) Uniform seed (10/10)

Seeded Condenser

Strong source (79/80)



Seeded Condensers

Formal definition

A function sCond : {0,1}" x {0,1}4 — {0,1}™is a (k, £)-seeded condenser
for a class of sources X' if forall X € X,

H: . (sCond(X,Uy)) > k



Seeded Condensers

Formal definition

A function sCond : {0,1}" x {0,1}4 — {0,1}™is a (k, £)-seeded condenser
for a class of sources X' if forall X € X,

H: (sCond(X,Uy)) > k

Theorem (Good seeded condensers exist)

Seeded condensers with logarithmic seed length and linear output length
exist.



Seeded Condensers

A function sCond : {0,1}" x {0,1}? — {0,1}™is a (k, €)-seeded condenser
for a class of sources X if forall X € &,

H: (sCond(X,Uy)) > k

Theorem (Good seeded condensers exist)

Foralld,e s.t. d > log(¢n/ec) 4+ O(1) and m = 0.014n + d + log(1/¢) + O(1),
exists sCond : {0,1}/2 x {0,1}¢ — {0,1}™ s.t. for all X ~ {0, 1}/ with
Heo(X) > 0.01¢n, we have

H: (sCond(X,Uy)) > 0.014n + d



Correctness of the Condenser
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Correctness of the Condenser

e g> 0510 — atleast0.01¢ Xi o Xy Xejpp - Xy
blocks in Z; ~ {0,1}*"/? are good. ‘ ‘ ‘ ‘ ‘ ‘

Y211 Y,
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Correctness of the Condenser

¢ g>0.51¢{ = atleast(0.01¢
blocks in Z; ~ {0,1}"/2 are good.

Pretend Z, ~ {0, 1}*/% is uniform.
sCond requirements satisfied!
HZZC"""(SCOHCI(Zb UZ/2)) > ksCond-
BUT Z, might have 0.49¢ bad bits!
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Adversary can’t make things too bad

Lemma

Let X ~ {0,1}" and sCond be s.t. H*rd(sCond (X, Uy)) > kscond-
Let U, be Uy except an adversary controls some b bits. Then,

H_(sCond(X, U%)) > kecond — b

where €' = £scong - 2°.
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e Pretend Z, ~ {0,1}%?is uniform. ® For sCond to exist, need
e sCond requirements satisfied! 0.5¢ > log(¢n/escond) + O(1)
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® g>051{ = atleast0.01¢ ® To get error ¢, need
blocks in Z; ~ {0,1}"/2 are good. et = @ 0 5 B
e Pretend Z, ~ {0,1}%?is uniform. ® For sCond to exist, need
e sCond requirements satisfied! 0.5¢ > log(¢n/escond) + O(1)
o Heseona(sCond(Z1, Upja)) > Kscond. ® Sorequire ¢ > 27901,

® BUT Z; might have 0.49¢ bad bits!

e Save sCond using lemma that
adversary can't be too bad.
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blocks in Z; ~ {0,1}"/2 are good.

e Pretend Z, ~ {0,1}%?is uniform.

e sCond requirements satisfied!

® Hewerd(sCond(Zy, Uyyz)) > Kkscond-

® BUT Z; might have 0.49¢ bad bits!

e Save sCond using lemma that
adversary can’t be too bad.

® H2 (sCond(Z,Zs) > kecond — 0.49¢
with &’ = eqcong - 204

To get error ¢, need
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€sCond = € - 2 .

For sCond to exist, need

So require ¢ > 27001,

sCond outputs m = 0.014n + O(1)
bits with entropy m — O(?).



Correctness of the Condenser

¢ g>0.51¢{ = atleast(0.01¢
blocks in Z; ~ {0,1}"/2 are good.

e Pretend Z, ~ {0,1}%?is uniform.

e sCond requirements satisfied!

® Hewerd(sCond(Zy, Uyyz)) > Kkscond-

® BUT Z; might have 0.49¢ bad bits!

e Save sCond using lemma that
adversary can't be too bad.

® H2 (sCond(Z,Zs) > kecond — 0.49¢
with &’ = eqcong - 204

To get error ¢, need
_ —0.49¢
€sCond = € - 2 .

For sCond to exist, need

0.5¢ > log(¢n/escond) + O(1)

So require ¢ > 27001,

sCond outputs m = 0.014n + O(1)
bits with entropy m — O(¢).

So for large const n, get entropy
rate ’"_TO(E) > 0.99.



Condensing from oNOSFs

Corollary (Sharp threshold at g = £/2)

Can’t condense ({/2,()-oNOSFs beyond rate 1/2 - Impossibility.
Can condense (0.51¢, ¢)-oNOSFs to rate 0.99 - Possibility. v
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|

® Explicit condensers for oNOSFs with constant block length?

® Our condensers (explicit and existential) have super-constant output
entropy gap . Is constant possible (for any values of ¢ and n)?

® Construct condensers for oNOBFs (online NOBFs).




	Part 0: Introduction
	Part 1: Models and Results
	Part 2: Possibility
	Part 3: Future Directions

