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Part 0: Introduction
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• Most applications need high quality randomness.
• In practice, randomness is derived from nature and is of low quality.



Randomness in computation

• Useful for randomized algorithms, cryptography, distributed computing
protocols, machine learning, etc.

• Most applications need high quality randomness.

• In practice, randomness is derived from nature and is of low quality.



Randomness in computation

• Useful for randomized algorithms, cryptography, distributed computing
protocols, machine learning, etc.

• Most applications need high quality randomness.
• In practice, randomness is derived from nature and is of low quality.



Extractor
Weak source (60 / 100)

Uniform source (50 / 50)
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Extractor
Definition (Extractor)

Ext : {0, 1}n → {0, 1}m is ε-extractor for class X if for all X ∈ X ,

|Ext(X)− Uniformm| ≤ ε,

| · | denotes statistical distance / total variation distance:

|A − B| = max
S⊂Ω

|Pr (A ∈ S)− Pr (B ∈ S)| = 1

2
∥A − B∥1



Single extractor for every
distribution?

→ Distributions must have entropy
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Min-entropy
Definition (Min-entropy)

Min-entropy of source X:

H∞(X) = − log
(

max
x∈support(X)

Pr(X = x)
)



Min-entropy
Definition (Min-entropy)

Min-entropy of source X:

H∞(X) = − log
(

max
x∈support(X)

Pr(X = x)
)

Definition (Smooth Min-entropy)

Smooth min-entropy of source X with parameter ε:

Hε
∞(X) = max

Y:|X−Y|≤ε
H∞(Y)
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Single extractor for every high
min-entropy distribution?

NO!
Solution: Distributions are structured.



Seedless extractors: a brief history



Seedless extractors: a brief history

• Two independent sources [ Chor—Goldreich’88, ..., Li’23 ].
• Sources generated by circuits / low complexity classes (applications to

circuit lower bounds) [ Trevisan—Vadhan’00, ..., Viola’14, ... ].
• Sources sampled by polynomials over large fields [ Dvir — Gabizon—

Wigderson’09, ... ].
• Sources sampled by polynomials over F2 [ Chattopadhyay—

Goodman—Gurumukhani (CGG)’24 ].
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• Relax this: guarantee closeness to high entropy distribution.
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X with entropy at least kin if for all X ∈ X ,
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∞(Cond(X)) ≥ kout
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• Randomized algorithms with poly(∆out) overhead [ Zuckerman’95 ].
• “One-shot simulations” for randomized protocols, cryptography,
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Condensing is useful

Simulating using only weak random source:
• Randomized algorithms with poly(∆out) overhead [ Zuckerman’95 ].
• “One-shot simulations” for randomized protocols, cryptography,

interactive proofs etc.

Condensers can exist where extractors (provably) can’t
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Seedless condensers: prior work

• Condensers for Chor-Goldreich (CG) sources and adversarial
Chor-Coldreich (CG) sources [ Doron–Moshkovitz –Oh–Zuckerman’23 ].

• Improved Condensers for Chor-Goldreich Sources [ Goodman – Li –
Zuckerman’24 ]



Part 1: Models and Results
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Oblivious Bit Fixing Sources (OBFs)

• ℓ bit input.

• g good bits: uniform, ℓ− g bad bits: constants.
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OBFs
Oblivious Bit Fixing Sources (OBFs)

• ℓ bit input.
• g good bits: uniform, ℓ− g bad bits: constants.

PARITY extracts from (1, ℓ)-OBFs.
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NOBFs
Non-Oblivious Bit Fixing Sources (NOBFs)

• g good bits: uniform, ℓ− g bad bits: arbitrary functions of good bits.
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• Can’t extract from
(
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Can you condense from (g, ℓ)-NOBFs when g < ℓ− ℓ
log ℓ
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Extracting / Condensing from NOBFs
Kahn–Kalai – Linial’88, Ben-Or – Linial’89, Ajtai – Linial’93

• Can’t extract from
(
ℓ− ℓ

log(ℓ) , ℓ
)
-NOBFs.

• Can extract from
(
ℓ− ℓ

log2(ℓ) , ℓ
)
-NOBFs.

Theorem (Chattopadhyay –Gurumukhani – R (CGR)’24)

For constant α, can’t condense ((1− α) · ℓ, ℓ)-NOBFs beyond rate 1 − α.
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Extracting / Condensing from NOSFs
Aggarwal –Obremski – Ribeiro –Siniscalchi – Visconti (AORSV)’20

Can’t extract from (0.99ℓ, ℓ)-NOSFs.

Theorem (CGR’24)

Can’t condense (g, ℓ)-NOSFs beyond rate g/ℓ.
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Extracting / Condensing from oNOSFs
[AORSV’20]

Can’t extract from (0.99ℓ, ℓ)-oNOSFs.

Theorem (CGR’24, CGRS’25)

Can’t condense (g, ℓ)-oNOSFs beyond rate 1
⌊ℓ/g⌋ .



Extracting / Condensing from oNOSFs
[AORSV’20]

Can’t extract from (0.99ℓ, ℓ)-oNOSFs.

Theorem (CGR’24, CGRS’25)

Can’t condense (g, ℓ)-oNOSFs beyond rate 1
⌊ℓ/g⌋ .

Can condense (g, ℓ)-oNOSFs to rate 1
⌊ℓ/g⌋ .
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Extracting / Condensing from oNOSFs
Corollary (Sharp threshold at g = ℓ/2)

Can’t condense (0.5ℓ, ℓ)-oNOSFs beyond rate 1/2 - Impossibility.
Can condense (0.51ℓ, ℓ)-oNOSFs to rate 0.99 - Possibility.



Part 2: Possibility



Condensers for (g, ℓ)-oNOSF sources
Theorem (Condensing uniform oNOSF sources)

For g ≥ 0.51ℓ, large constant block length n, and ℓ increasing, we can
condense any oNOSF source to entropy rate 0.99.



Condensers for (g, ℓ)-oNOSF sources
Theorem (Condensing uniform oNOSF sources)

For g ≥ 0.51ℓ, ℓ = Ω(log(1/ε)), and n = 104, exists Cond : {0, 1}ℓn → {0, 1}m
s.t. for any (g, ℓ)-oNOSF X, Hε

∞(Cond(X)) ≥ 0.99m where
m = Ω(ℓ+ log(1/ε)).
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min-entropy.



Condensers for (g, ℓ)-oNOSF sources
Theorem (Condensing uniform oNOSF sources)

For g ≥ 0.51ℓ, ℓ = Ω(log(1/ε)), and n = 104, exists Cond : {0, 1}ℓn → {0, 1}m
s.t. for any (g, ℓ)-oNOSF X, Hε

∞(Cond(X)) ≥ 0.99m where
m = Ω(ℓ+ log(1/ε)).

Theorem (Condensing low-entropy oNOSF sources)

For g ≥ 0.51ℓ, n = polylog(ℓ/ε) exists Cond : ({0, 1}n)ℓ → {0, 1}m s.t. for any
low-entropy (g, ℓ)-oNOSF X with k = Ω(log(ℓ/ε)),
Hε
∞(Cond(X)) ≥ m− O(m/ logm) − O(log(1/ε)) where m = Ω(k).
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Theorem (Condensing uniform oNOSF sources)

For g ≥ 0.51ℓ, ℓ = Ω(log(1/ε)), and n = 104, exists Cond : {0, 1}ℓn → {0, 1}m
s.t. for any (g, ℓ)-oNOSF X, Hε

∞(Cond(X)) ≥ 0.99m where
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Theorem (Condensing low-entropy oNOSF sources)

For g ≥ 0.51ℓ, n = polylog(ℓ/ε) exists Cond : ({0, 1}n)ℓ → {0, 1}m s.t. for any
low-entropy (g, ℓ)-oNOSF X with k = Ω(log(ℓ/ε)),
Hε
∞(Cond(X)) ≥ m− O(m/ logm) − O(log(1/ε)) where m = Ω(k).

Theorem (Extend AORSV’20 result)

Transform low-entropy (g, ℓ)-oNOSFs→ uniform (0.99g, ℓ)-oNOSFs.
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Theorem (Condensing uniform oNOSF sources)

For g ≥ 0.51ℓ, ℓ = Ω(log(1/ε)), and n = 104, exists Cond : {0, 1}ℓn → {0, 1}m
s.t. for any (g, ℓ)-oNOSF X, Hε

∞(Cond(X)) ≥ 0.99m where
m = Ω(ℓ+ log(1/ε)).

Does a random function work?

No!
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Theorem (Condensing uniform oNOSF sources)

For g ≥ 0.51ℓ, ℓ = Ω(log(1/ε)), and n = 104, exists Cond : {0, 1}ℓn → {0, 1}m
s.t. for any (g, ℓ)-oNOSF X, Hε

∞(Cond(X)) ≥ 0.99m where
m = Ω(ℓ+ log(1/ε)).



Constructing the condenser
Problem
A random function doesn’t condense because the adversary has too much
power in latter blocks.
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Constructing the condenser
Solution
Take only first bit of latter half of blocks to weaken the adversary.

X1 Xℓ/2· · · Xℓ/2+1 Xℓ· · ·

Yℓ/2+1 Yℓ

Z1 Z2

sCond
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Strong source (79/80)



Seeded Condensers
Formal definition
A function sCond : {0, 1}n × {0, 1}d → {0, 1}m is a (k, ε)-seeded condenser
for a class of sources X if for all X ∈ X ,
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Seeded condensers with logarithmic seed length and linear output length
exist.



Seeded Condensers
Formal definition
A function sCond : {0, 1}n × {0, 1}d → {0, 1}m is a (k, ε)-seeded condenser
for a class of sources X if for all X ∈ X ,

Hε
∞(sCond(X,Ud)) ≥ k

Theorem (Good seeded condensers exist)

For all d, ε s.t. d ≥ log(ℓn/ε) + O(1) and m = 0.01ℓn+ d+ log(1/ε) + O(1),
exists sCond : {0, 1}ℓn/2 × {0, 1}d → {0, 1}m s.t. for all X ∼ {0, 1}ℓn/2 with
H∞(X) ≥ 0.01ℓn, we have

Hε
∞(sCond(X,Ud)) ≥ 0.01ℓn+ d



Correctness of the Condenser

Proof.

• g ≥ 0.51ℓ =⇒ at least 0.01ℓ
blocks in Z1 ∼ {0, 1}ℓn/2 are good.

• Pretend Z2 ∼ {0, 1}ℓ/2 is uniform.
• sCond requirements satisfied!
• HεsCond

∞ (sCond(Z1,Uℓ/2)) ≥ ksCond.
• BUT Z2 might have 0.49ℓ bad bits!

X1 Xℓ/2· · · Xℓ/2+1 Xℓ· · ·

Yℓ/2+1 Yℓ

Z1 Z2

sCond
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Adversary can’t make things too bad
Lemma
Let X ∼ {0, 1}n and sCond be s.t. HεsCond

∞ (sCond(X,Ud)) ≥ ksCond.
Let U′

d be Ud except an adversary controls some b bits. Then,

Hε′

∞(sCond(X,U′
d)) ≥ ksCond − b

where ε′ = εsCond · 2b.
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Proof.

• g ≥ 0.51ℓ =⇒ at least 0.01ℓ
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• Pretend Z2 ∼ {0, 1}ℓ/2 is uniform.
• sCond requirements satisfied!
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• BUT Z2 might have 0.49ℓ bad bits!

• Save sCond using lemma that
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Correctness of the Condenser

Proof.

• g ≥ 0.51ℓ =⇒ at least 0.01ℓ
blocks in Z1 ∼ {0, 1}ℓn/2 are good.

• Pretend Z2 ∼ {0, 1}ℓ/2 is uniform.
• sCond requirements satisfied!
• HεsCond

∞ (sCond(Z1,Uℓ/2)) ≥ ksCond.
• BUT Z2 might have 0.49ℓ bad bits!
• Save sCond using lemma that

adversary can’t be too bad.
• Hε′

∞(sCond(Z1,Z2) ≥ ksCond − 0.49ℓ
with ε′ = εsCond · 20.49ℓ.

Proof.

• To get error ε, need
εsCond = ε · 2−0.49ℓ.

• For sCond to exist, need
0.5ℓ ≥ log(ℓn/εsCond) + O(1)

• So require ε ≥ 2−0.01ℓ.
• sCond outputsm = 0.01ℓn+ O(1)

bits with entropym− O(ℓ).
• So for large const n, get entropy
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Condensing from oNOSFs
Corollary (Sharp threshold at g = ℓ/2)

Can’t condense (ℓ/2, ℓ)-oNOSFs beyond rate 1/2 - Impossibility.
Can condense (0.51ℓ, ℓ)-oNOSFs to rate 0.99 - Possibility. ✓
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