
Condensing and Extracting
Against Online Adversaries

Eshan Chattopadhyay

Cornell University

Mohit Gurumukhani

Cornell University

Rocco Servedio

Columbia University

Noam Ringach

Cornell University

Part 0: Introduction

Randomness in computation

Randomness in computation

• Useful for randomized algorithms, cryptography, distributed computing
protocols, machine learning, etc.

• Most applications need high quality randomness.
• In practice, randomness is derived from nature and is of low quality.

Randomness in computation

• Useful for randomized algorithms, cryptography, distributed computing
protocols, machine learning, etc.

• Most applications need high quality randomness.

• In practice, randomness is derived from nature and is of low quality.

Randomness in computation

• Useful for randomized algorithms, cryptography, distributed computing
protocols, machine learning, etc.

• Most applications need high quality randomness.
• In practice, randomness is derived from nature and is of low quality.

Extractor
Weak source (60 / 100)

Uniform source (50 / 50)

Extractor

Extractor
Definition (Extractor)

Ext : {0, 1}n → {0, 1}m is ε-extractor for class X if for all X ∈ X ,

|Ext(X)− Uniformm| ≤ ε,

| · | denotes statistical distance / total variation distance:

|A − B| = max
S⊂Ω

|Pr (A ∈ S)− Pr (B ∈ S)| = 1

2
∥A − B∥1

Single extractor for every
distribution?

→ Distributions must have entropy

Single extractor for every
distribution?

NO!

→ Distributions must have entropy

Single extractor for every
distribution?

NO!
→ Distributions must have entropy

Min-entropy

A B C D E
0

0.2

0.4

0.6

0.8

1

Pr(x) ≤ 1
2k

Outcome

Pr
o
ba

bi
lit
ie
s

H∞(X) = k

Min-entropy
Definition (Min-entropy)

Min-entropy of source X:

H∞(X) = − log
(

max
x∈support(X)

Pr(X = x)
)

Min-entropy
Definition (Min-entropy)

Min-entropy of source X:

H∞(X) = − log
(

max
x∈support(X)

Pr(X = x)
)

Definition (Smooth Min-entropy)

Smooth min-entropy of source X with parameter ε:

Hε
∞(X) = max

Y:|X−Y|≤ε
H∞(Y)

Single extractor for every high
min-entropy distribution?

Single extractor for every high
min-entropy distribution?

NO!

Single extractor for every high
min-entropy distribution?

f−1(0) f−1(1)

Single extractor for every high
min-entropy distribution?

NO!
Solution: Distributions are structured.

Seedless extractors: a brief history

Seedless extractors: a brief history

• Two independent sources [Chor—Goldreich’88, ..., Li’23].
• Sources generated by circuits / low complexity classes (applications to

circuit lower bounds) [Trevisan—Vadhan’00, ..., Viola’14, ...].
• Sources sampled by polynomials over large fields [Dvir — Gabizon—

Wigderson’09, ...].
• Sources sampled by polynomials over F2 [Chattopadhyay—

Goodman—Gurumukhani (CGG)’24].

Sometimes extractors don’t exist

Sometimes extractors don’t exist

• Extractors guarantee closeness to uniform distribution.

• Relax this: guarantee closeness to high entropy distribution.

Sometimes extractors don’t exist

• Extractors guarantee closeness to uniform distribution.
• Relax this: guarantee closeness to high entropy distribution.

Condenser
Weak source (60 / 100)

Strong source (48 / 50)

Condenser

Condenser
Condenser
Cond : {0, 1}n → {0, 1}m is a (kin, kout, ε)-condenser for class of distributions
X with entropy at least kin if for all X ∈ X ,

Hε
∞(Cond(X)) ≥ kout

Condenser
Condenser
Cond : {0, 1}n → {0, 1}m is a (kin, kout, ε)-condenser for class of distributions
X with entropy at least kin if for all X ∈ X ,

Hε
∞(Cond(X)) ≥ kout

• Care about increasing entropy rate:

kin
n

vs kout
m

Condenser
Condenser
Cond : {0, 1}n → {0, 1}m is a (kin, kout, ε)-condenser for class of distributions
X with entropy at least kin if for all X ∈ X ,

Hε
∞(Cond(X)) ≥ kout

• Care about increasing entropy rate:

kin
n

≪ kout
m

• Care about minimizing entropy gap:

∆out = m− kout

Condenser
Condenser
Cond : {0, 1}n → {0, 1}m is a (kin, kout, ε)-condenser for class of distributions
X with entropy at least kin if for all X ∈ X ,

Hε
∞(Cond(X)) ≥ kout

• Care about increasing entropy rate:

kin
n

≪ kout
m

• Care about minimizing entropy gap:

∆out = m− kout

Condensing is useful

Condensing is useful

Simulating using only weak random source:

• Randomized algorithms with poly(∆out) overhead [Zuckerman’95].
• “One-shot simulations” for randomized protocols, cryptography,

interactive proofs etc.

Condensing is useful

Simulating using only weak random source:
• Randomized algorithms with poly(∆out) overhead [Zuckerman’95].

• “One-shot simulations” for randomized protocols, cryptography,
interactive proofs etc.

Condensing is useful

Simulating using only weak random source:
• Randomized algorithms with poly(∆out) overhead [Zuckerman’95].
• “One-shot simulations” for randomized protocols, cryptography,

interactive proofs etc.

Condensing is useful

Simulating using only weak random source:
• Randomized algorithms with poly(∆out) overhead [Zuckerman’95].
• “One-shot simulations” for randomized protocols, cryptography,

interactive proofs etc.

Condensers can exist where extractors (provably) can’t

Single condenser for every high
min-entropy distribution?

→ Same solution: Distributions should be structured.

Single condenser for every high
min-entropy distribution?

NO!

→ Same solution: Distributions should be
structured.

Single condenser for every high
min-entropy distribution?

NO!
→ Same solution: Distributions should be

structured.

Seedless condensers: prior work

Seedless condensers: prior work

• Condensers for Chor-Goldreich (CG) sources and adversarial
Chor-Coldreich (CG) sources [Doron–Moshkovitz –Oh–Zuckerman’23].

• Improved Condensers for Chor-Goldreich Sources [Goodman – Li –
Zuckerman’24]

Part 1: Models and Results

OBFs

OBFs
Oblivious Bit Fixing Sources (OBFs)

• ℓ bit input.

• g good bits: uniform, ℓ− g bad bits: constants.

OBFs
Oblivious Bit Fixing Sources (OBFs)

• ℓ bit input.
• g good bits: uniform, ℓ− g bad bits: constants.

OBFs
Oblivious Bit Fixing Sources (OBFs)

• ℓ bit input.
• g good bits: uniform, ℓ− g bad bits: constants.

PARITY extracts from (1, ℓ)-OBFs.

NOBFs

NOBFs
Non-Oblivious Bit Fixing Sources (NOBFs)

• g good bits: uniform, ℓ− g bad bits: arbitrary functions of good bits.

Extracting / Condensing from NOBFs

Extracting / Condensing from NOBFs
Kahn–Kalai – Linial’88, Ben-Or – Linial’89, Ajtai – Linial’93

• Can’t extract from
(
ℓ− ℓ

log(ℓ) , ℓ
)
-NOBFs.

• Can extract from
(
ℓ− ℓ

log2(ℓ) , ℓ
)
-NOBFs.

Extracting / Condensing from NOBFs
Kahn–Kalai – Linial’88, Ben-Or – Linial’89, Ajtai – Linial’93

• Can’t extract from
(
ℓ− ℓ

log(ℓ) , ℓ
)
-NOBFs.

• Can extract from
(
ℓ− ℓ

log2(ℓ) , ℓ
)
-NOBFs.

Extracting / Condensing from NOBFs
Kahn–Kalai – Linial’88, Ben-Or – Linial’89, Ajtai – Linial’93

• Can’t extract from
(
ℓ− ℓ

log(ℓ) , ℓ
)
-NOBFs.

• Can extract from
(
ℓ− ℓ

log2(ℓ) , ℓ
)
-NOBFs.

Question

Can you condense from (g, ℓ)-NOBFs when g < ℓ− ℓ
log ℓ

?

Extracting / Condensing from NOBFs
Kahn–Kalai – Linial’88, Ben-Or – Linial’89, Ajtai – Linial’93

• Can’t extract from
(
ℓ− ℓ

log(ℓ) , ℓ
)
-NOBFs.

• Can extract from
(
ℓ− ℓ

log2(ℓ) , ℓ
)
-NOBFs.

Theorem (Chattopadhyay –Gurumukhani – R (CGR)’24)

For constant α, can’t condense ((1− α) · ℓ, ℓ)-NOBFs beyond rate 1 − α.

NOSFs

NOSFs
Non-Oblivious Symbol Fixing Sources (NOSFs)

• ℓ blocks of length n each.

• g good blocks: uniform, ℓ− g bad blocks: arbitrary functions of good
blocks.

NOSFs
Non-Oblivious Symbol Fixing Sources (NOSFs)

• ℓ blocks of length n each.
• g good blocks: uniform, ℓ− g bad blocks: arbitrary functions of good

blocks.

Extracting / Condensing from NOSFs

Extracting / Condensing from NOSFs
Aggarwal –Obremski – Ribeiro –Siniscalchi – Visconti (AORSV)’20

Can’t extract from (0.99ℓ, ℓ)-NOSFs.

Extracting / Condensing from NOSFs
Aggarwal –Obremski – Ribeiro –Siniscalchi – Visconti (AORSV)’20

Can’t extract from (0.99ℓ, ℓ)-NOSFs.

Question

Can you condense from (g, ℓ)-NOSFs?

Extracting / Condensing from NOSFs
Aggarwal –Obremski – Ribeiro –Siniscalchi – Visconti (AORSV)’20

Can’t extract from (0.99ℓ, ℓ)-NOSFs.

Theorem (CGR’24)

Can’t condense (g, ℓ)-NOSFs beyond rate g/ℓ.

oNOSFs

oNOSFs
Online Non-Oblivious Symbol Fixing Sources (oNOSFs)

• g good blocks: uniform, ℓ− g bad blocks: arbitrary functions of good
blocks that appear before it.

oNOSFs
Online Non-Oblivious Symbol Fixing Sources (oNOSFs)

• g good blocks: uniform, ℓ− g bad blocks: arbitrary functions of good
blocks that appear before it.

oNOSFs = Blockchain

oNOSFs = Blockchain

oNOSFs = Blockchain

oNOSFs = Blockchain

oNOSFs = Blockchain

oNOSFs = Blockchain

oNOSFs = Blockchain

Extracting / Condensing from oNOSFs

Extracting / Condensing from oNOSFs
[AORSV’20]

Can’t extract from (0.99ℓ, ℓ)-oNOSFs.

Extracting / Condensing from oNOSFs
[AORSV’20]

Can’t extract from (0.99ℓ, ℓ)-oNOSFs.

Question

Can you condense from (g, ℓ)-oNOSFs?

Extracting / Condensing from oNOSFs
[AORSV’20]

Can’t extract from (0.99ℓ, ℓ)-oNOSFs.

Theorem (CGR’24, CGRS’25)

Can’t condense (g, ℓ)-oNOSFs beyond rate 1
⌊ℓ/g⌋ .

Extracting / Condensing from oNOSFs
[AORSV’20]

Can’t extract from (0.99ℓ, ℓ)-oNOSFs.

Theorem (CGR’24, CGRS’25)

Can’t condense (g, ℓ)-oNOSFs beyond rate 1
⌊ℓ/g⌋ .

Can condense (g, ℓ)-oNOSFs to rate 1
⌊ℓ/g⌋ .

11
2

1
3

1
4

1
50

Input entropy rate: g /

1

1/2

1/3
1/4
1/5

0O
ut

pu
t

en
tr

op
y

ra
te

: 1
 /

flo
or

(
 /

g) Our non-trivial condenser
A trivial condenser

Extracting / Condensing from oNOSFs
Corollary (Sharp threshold at g = ℓ/2)

Can’t condense (0.5ℓ, ℓ)-oNOSFs beyond rate 1/2 - Impossibility.
Can condense (0.51ℓ, ℓ)-oNOSFs to rate 0.99 - Possibility.

Part 2: Possibility

Condensers for (g, ℓ)-oNOSF sources
Theorem (Condensing uniform oNOSF sources)

For g ≥ 0.51ℓ, large constant block length n, and ℓ increasing, we can
condense any oNOSF source to entropy rate 0.99.

Condensers for (g, ℓ)-oNOSF sources
Theorem (Condensing uniform oNOSF sources)

For g ≥ 0.51ℓ, ℓ = Ω(log(1/ε)), and n = 104, exists Cond : {0, 1}ℓn → {0, 1}m
s.t. for any (g, ℓ)-oNOSF X, Hε

∞(Cond(X)) ≥ 0.99m where
m = Ω(ℓ+ log(1/ε)).

Condensers for (g, ℓ)-oNOSF sources
Theorem (Condensing uniform oNOSF sources)

For g ≥ 0.51ℓ, ℓ = Ω(log(1/ε)), and n = 104, exists Cond : {0, 1}ℓn → {0, 1}m
s.t. for any (g, ℓ)-oNOSF X, Hε

∞(Cond(X)) ≥ 0.99m where
m = Ω(ℓ+ log(1/ε)).

Theorem (Condensing low-entropy oNOSF sources)

For g ≥ 0.51ℓ, we can similarly condense oNOSF sources with logarithmic
min-entropy.

Condensers for (g, ℓ)-oNOSF sources
Theorem (Condensing uniform oNOSF sources)

For g ≥ 0.51ℓ, ℓ = Ω(log(1/ε)), and n = 104, exists Cond : {0, 1}ℓn → {0, 1}m
s.t. for any (g, ℓ)-oNOSF X, Hε

∞(Cond(X)) ≥ 0.99m where
m = Ω(ℓ+ log(1/ε)).

Theorem (Condensing low-entropy oNOSF sources)

For g ≥ 0.51ℓ, n = polylog(ℓ/ε) exists Cond : ({0, 1}n)ℓ → {0, 1}m s.t. for any
low-entropy (g, ℓ)-oNOSF X with k = Ω(log(ℓ/ε)),
Hε
∞(Cond(X)) ≥ m− O(m/ logm) − O(log(1/ε)) where m = Ω(k).

Condensers for (g, ℓ)-oNOSF sources
Theorem (Condensing uniform oNOSF sources)

For g ≥ 0.51ℓ, ℓ = Ω(log(1/ε)), and n = 104, exists Cond : {0, 1}ℓn → {0, 1}m
s.t. for any (g, ℓ)-oNOSF X, Hε

∞(Cond(X)) ≥ 0.99m where
m = Ω(ℓ+ log(1/ε)).

Theorem (Condensing low-entropy oNOSF sources)

For g ≥ 0.51ℓ, n = polylog(ℓ/ε) exists Cond : ({0, 1}n)ℓ → {0, 1}m s.t. for any
low-entropy (g, ℓ)-oNOSF X with k = Ω(log(ℓ/ε)),
Hε
∞(Cond(X)) ≥ m− O(m/ logm) − O(log(1/ε)) where m = Ω(k).

Theorem (Extend AORSV’20 result)

Transform low-entropy (g, ℓ)-oNOSFs→ uniform (0.99g, ℓ)-oNOSFs.

Condensers for (g, ℓ)-oNOSF sources
Theorem (Condensing uniform oNOSF sources)

For g ≥ 0.51ℓ, ℓ = Ω(log(1/ε)), and n = 104, exists Cond : {0, 1}ℓn → {0, 1}m
s.t. for any (g, ℓ)-oNOSF X, Hε

∞(Cond(X)) ≥ 0.99m where
m = Ω(ℓ+ log(1/ε)).

Does a random function work?

Condensers for (g, ℓ)-oNOSF sources
Theorem (Condensing uniform oNOSF sources)

For g ≥ 0.51ℓ, ℓ = Ω(log(1/ε)), and n = 104, exists Cond : {0, 1}ℓn → {0, 1}m
s.t. for any (g, ℓ)-oNOSF X, Hε

∞(Cond(X)) ≥ 0.99m where
m = Ω(ℓ+ log(1/ε)).

Does a random function work?

No!

Condensers for (g, ℓ)-oNOSF sources
Theorem (Condensing uniform oNOSF sources)

For g ≥ 0.51ℓ, ℓ = Ω(log(1/ε)), and n = 104, exists Cond : {0, 1}ℓn → {0, 1}m
s.t. for any (g, ℓ)-oNOSF X, Hε

∞(Cond(X)) ≥ 0.99m where
m = Ω(ℓ+ log(1/ε)).

Condensers for (g, ℓ)-oNOSF sources
Theorem (Condensing uniform oNOSF sources)

For g ≥ 0.51ℓ, ℓ = Ω(log(1/ε)), and n = 104, exists Cond : {0, 1}ℓn → {0, 1}m
s.t. for any (g, ℓ)-oNOSF X, Hε

∞(Cond(X)) ≥ 0.99m where
m = Ω(ℓ+ log(1/ε)).

Constructing the condenser
Problem
A random function doesn’t condense because the adversary has too much
power in latter blocks.

X1 Xℓ/2· · · Xℓ/2+1 Xℓ· · ·

Constructing the condenser
Solution
Take only first bit of latter half of blocks to weaken the adversary.

X1 Xℓ/2· · · Xℓ/2+1 Xℓ· · ·

Yℓ/2+1 Yℓ

Constructing the condenser
Solution
Take only first bit of latter half of blocks to weaken the adversary.

X1 Xℓ/2· · · Xℓ/2+1 Xℓ· · ·

Yℓ/2+1 Yℓ

Z1 Z2

Constructing the condenser
Solution
Take only first bit of latter half of blocks to weaken the adversary.

X1 Xℓ/2· · · Xℓ/2+1 Xℓ· · ·

Yℓ/2+1 Yℓ

Z1 Z2

Now a random function works!

Constructing the condenser
Solution
Take only first bit of latter half of blocks to weaken the adversary.

X1 Xℓ/2· · · Xℓ/2+1 Xℓ· · ·

Yℓ/2+1 Yℓ

Z1 Z2

sCond

Seeded Condensers

Seeded Condensers
Weak source (65/90) Uniform seed (10/10)

Seeded Condenser

Strong source (79/80)

Seeded Condensers
Formal definition
A function sCond : {0, 1}n × {0, 1}d → {0, 1}m is a (k, ε)-seeded condenser
for a class of sources X if for all X ∈ X ,

Hε
∞(sCond(X,Ud)) ≥ k

Seeded Condensers
Formal definition
A function sCond : {0, 1}n × {0, 1}d → {0, 1}m is a (k, ε)-seeded condenser
for a class of sources X if for all X ∈ X ,

Hε
∞(sCond(X,Ud)) ≥ k

Theorem (Good seeded condensers exist)

Seeded condensers with logarithmic seed length and linear output length
exist.

Seeded Condensers
Formal definition
A function sCond : {0, 1}n × {0, 1}d → {0, 1}m is a (k, ε)-seeded condenser
for a class of sources X if for all X ∈ X ,

Hε
∞(sCond(X,Ud)) ≥ k

Theorem (Good seeded condensers exist)

For all d, ε s.t. d ≥ log(ℓn/ε) + O(1) and m = 0.01ℓn+ d+ log(1/ε) + O(1),
exists sCond : {0, 1}ℓn/2 × {0, 1}d → {0, 1}m s.t. for all X ∼ {0, 1}ℓn/2 with
H∞(X) ≥ 0.01ℓn, we have

Hε
∞(sCond(X,Ud)) ≥ 0.01ℓn+ d

Correctness of the Condenser

Proof.

• g ≥ 0.51ℓ =⇒ at least 0.01ℓ
blocks in Z1 ∼ {0, 1}ℓn/2 are good.

• Pretend Z2 ∼ {0, 1}ℓ/2 is uniform.
• sCond requirements satisfied!
• HεsCond

∞ (sCond(Z1,Uℓ/2)) ≥ ksCond.
• BUT Z2 might have 0.49ℓ bad bits!

X1 Xℓ/2· · · Xℓ/2+1 Xℓ· · ·

Yℓ/2+1 Yℓ

Z1 Z2

sCond

Correctness of the Condenser

Proof.

• g ≥ 0.51ℓ =⇒ at least 0.01ℓ
blocks in Z1 ∼ {0, 1}ℓn/2 are good.

• Pretend Z2 ∼ {0, 1}ℓ/2 is uniform.
• sCond requirements satisfied!
• HεsCond

∞ (sCond(Z1,Uℓ/2)) ≥ ksCond.
• BUT Z2 might have 0.49ℓ bad bits!

X1 Xℓ/2· · · Xℓ/2+1 Xℓ· · ·

Yℓ/2+1 Yℓ

Z1 Z2

sCond

Correctness of the Condenser

Proof.

• g ≥ 0.51ℓ =⇒ at least 0.01ℓ
blocks in Z1 ∼ {0, 1}ℓn/2 are good.

• Pretend Z2 ∼ {0, 1}ℓ/2 is uniform.

• sCond requirements satisfied!
• HεsCond

∞ (sCond(Z1,Uℓ/2)) ≥ ksCond.
• BUT Z2 might have 0.49ℓ bad bits!

X1 Xℓ/2· · · Xℓ/2+1 Xℓ· · ·

Yℓ/2+1 Yℓ

Z1 Z2

sCond

Correctness of the Condenser

Proof.

• g ≥ 0.51ℓ =⇒ at least 0.01ℓ
blocks in Z1 ∼ {0, 1}ℓn/2 are good.

• Pretend Z2 ∼ {0, 1}ℓ/2 is uniform.
• sCond requirements satisfied!

• HεsCond
∞ (sCond(Z1,Uℓ/2)) ≥ ksCond.

• BUT Z2 might have 0.49ℓ bad bits!

X1 Xℓ/2· · · Xℓ/2+1 Xℓ· · ·

Yℓ/2+1 Yℓ

Z1 Z2

sCond

Correctness of the Condenser

Proof.

• g ≥ 0.51ℓ =⇒ at least 0.01ℓ
blocks in Z1 ∼ {0, 1}ℓn/2 are good.

• Pretend Z2 ∼ {0, 1}ℓ/2 is uniform.
• sCond requirements satisfied!
• HεsCond

∞ (sCond(Z1,Uℓ/2)) ≥ ksCond.

• BUT Z2 might have 0.49ℓ bad bits!

X1 Xℓ/2· · · Xℓ/2+1 Xℓ· · ·

Yℓ/2+1 Yℓ

Z1 Z2

sCond

Correctness of the Condenser

Proof.

• g ≥ 0.51ℓ =⇒ at least 0.01ℓ
blocks in Z1 ∼ {0, 1}ℓn/2 are good.

• Pretend Z2 ∼ {0, 1}ℓ/2 is uniform.
• sCond requirements satisfied!
• HεsCond

∞ (sCond(Z1,Uℓ/2)) ≥ ksCond.
• BUT Z2 might have 0.49ℓ bad bits!

X1 Xℓ/2· · · Xℓ/2+1 Xℓ· · ·

Yℓ/2+1 Yℓ

Z1 Z2

sCond

Adversary can’t make things too bad

Adversary can’t make things too bad
Lemma
Let X ∼ {0, 1}n and sCond be s.t. HεsCond

∞ (sCond(X,Ud)) ≥ ksCond.
Let U′

d be Ud except an adversary controls some b bits. Then,

Hε′

∞(sCond(X,U′
d)) ≥ ksCond − b

where ε′ = εsCond · 2b.

Correctness of the Condenser

Proof.

• g ≥ 0.51ℓ =⇒ at least 0.01ℓ
blocks in Z1 ∼ {0, 1}ℓn/2 are good.

• Pretend Z2 ∼ {0, 1}ℓ/2 is uniform.
• sCond requirements satisfied!
• HεsCond

∞ (sCond(Z1,Uℓ/2)) ≥ ksCond.
• BUT Z2 might have 0.49ℓ bad bits!

• Save sCond using lemma that
adversary can’t be too bad.

• Hε′
∞(sCond(Z1,Z2) ≥ ksCond − 0.49ℓ

with ε′ = εsCond · 20.49ℓ.

X1 Xℓ/2· · · Xℓ/2+1 Xℓ· · ·

Yℓ/2+1 Yℓ

Z1 Z2

sCond

Correctness of the Condenser

Proof.

• g ≥ 0.51ℓ =⇒ at least 0.01ℓ
blocks in Z1 ∼ {0, 1}ℓn/2 are good.

• Pretend Z2 ∼ {0, 1}ℓ/2 is uniform.
• sCond requirements satisfied!
• HεsCond

∞ (sCond(Z1,Uℓ/2)) ≥ ksCond.
• BUT Z2 might have 0.49ℓ bad bits!
• Save sCond using lemma that

adversary can’t be too bad.

• Hε′
∞(sCond(Z1,Z2) ≥ ksCond − 0.49ℓ

with ε′ = εsCond · 20.49ℓ.

X1 Xℓ/2· · · Xℓ/2+1 Xℓ· · ·

Yℓ/2+1 Yℓ

Z1 Z2

sCond

Correctness of the Condenser

Proof.

• g ≥ 0.51ℓ =⇒ at least 0.01ℓ
blocks in Z1 ∼ {0, 1}ℓn/2 are good.

• Pretend Z2 ∼ {0, 1}ℓ/2 is uniform.
• sCond requirements satisfied!
• HεsCond

∞ (sCond(Z1,Uℓ/2)) ≥ ksCond.
• BUT Z2 might have 0.49ℓ bad bits!
• Save sCond using lemma that

adversary can’t be too bad.
• Hε′

∞(sCond(Z1,Z2) ≥ ksCond − 0.49ℓ
with ε′ = εsCond · 20.49ℓ.

X1 Xℓ/2· · · Xℓ/2+1 Xℓ· · ·

Yℓ/2+1 Yℓ

Z1 Z2

sCond

Correctness of the Condenser

Proof.

• g ≥ 0.51ℓ =⇒ at least 0.01ℓ
blocks in Z1 ∼ {0, 1}ℓn/2 are good.

• Pretend Z2 ∼ {0, 1}ℓ/2 is uniform.
• sCond requirements satisfied!
• HεsCond

∞ (sCond(Z1,Uℓ/2)) ≥ ksCond.
• BUT Z2 might have 0.49ℓ bad bits!
• Save sCond using lemma that

adversary can’t be too bad.
• Hε′

∞(sCond(Z1,Z2) ≥ ksCond − 0.49ℓ
with ε′ = εsCond · 20.49ℓ.

Proof.

• To get error ε, need
εsCond = ε · 2−0.49ℓ.

• For sCond to exist, need
0.5ℓ ≥ log(ℓn/εsCond) + O(1)

• So require ε ≥ 2−0.01ℓ.
• sCond outputsm = 0.01ℓn+ O(1)

bits with entropym− O(ℓ).
• So for large const n, get entropy

rate m−O(ℓ)
m ≥ 0.99.

Correctness of the Condenser

Proof.

• g ≥ 0.51ℓ =⇒ at least 0.01ℓ
blocks in Z1 ∼ {0, 1}ℓn/2 are good.

• Pretend Z2 ∼ {0, 1}ℓ/2 is uniform.
• sCond requirements satisfied!
• HεsCond

∞ (sCond(Z1,Uℓ/2)) ≥ ksCond.
• BUT Z2 might have 0.49ℓ bad bits!
• Save sCond using lemma that

adversary can’t be too bad.
• Hε′

∞(sCond(Z1,Z2) ≥ ksCond − 0.49ℓ
with ε′ = εsCond · 20.49ℓ.

Proof.

• To get error ε, need
εsCond = ε · 2−0.49ℓ.

• For sCond to exist, need
0.5ℓ ≥ log(ℓn/εsCond) + O(1)

• So require ε ≥ 2−0.01ℓ.
• sCond outputsm = 0.01ℓn+ O(1)

bits with entropym− O(ℓ).
• So for large const n, get entropy

rate m−O(ℓ)
m ≥ 0.99.

Correctness of the Condenser

Proof.

• g ≥ 0.51ℓ =⇒ at least 0.01ℓ
blocks in Z1 ∼ {0, 1}ℓn/2 are good.

• Pretend Z2 ∼ {0, 1}ℓ/2 is uniform.
• sCond requirements satisfied!
• HεsCond

∞ (sCond(Z1,Uℓ/2)) ≥ ksCond.
• BUT Z2 might have 0.49ℓ bad bits!
• Save sCond using lemma that

adversary can’t be too bad.
• Hε′

∞(sCond(Z1,Z2) ≥ ksCond − 0.49ℓ
with ε′ = εsCond · 20.49ℓ.

Proof.

• To get error ε, need
εsCond = ε · 2−0.49ℓ.

• For sCond to exist, need
0.5ℓ ≥ log(ℓn/εsCond) + O(1)

• So require ε ≥ 2−0.01ℓ.

• sCond outputsm = 0.01ℓn+ O(1)
bits with entropym− O(ℓ).

• So for large const n, get entropy
rate m−O(ℓ)

m ≥ 0.99.

Correctness of the Condenser

Proof.

• g ≥ 0.51ℓ =⇒ at least 0.01ℓ
blocks in Z1 ∼ {0, 1}ℓn/2 are good.

• Pretend Z2 ∼ {0, 1}ℓ/2 is uniform.
• sCond requirements satisfied!
• HεsCond

∞ (sCond(Z1,Uℓ/2)) ≥ ksCond.
• BUT Z2 might have 0.49ℓ bad bits!
• Save sCond using lemma that

adversary can’t be too bad.
• Hε′

∞(sCond(Z1,Z2) ≥ ksCond − 0.49ℓ
with ε′ = εsCond · 20.49ℓ.

Proof.

• To get error ε, need
εsCond = ε · 2−0.49ℓ.

• For sCond to exist, need
0.5ℓ ≥ log(ℓn/εsCond) + O(1)

• So require ε ≥ 2−0.01ℓ.
• sCond outputsm = 0.01ℓn+ O(1)

bits with entropym− O(ℓ).

• So for large const n, get entropy
rate m−O(ℓ)

m ≥ 0.99.

Correctness of the Condenser

Proof.

• g ≥ 0.51ℓ =⇒ at least 0.01ℓ
blocks in Z1 ∼ {0, 1}ℓn/2 are good.

• Pretend Z2 ∼ {0, 1}ℓ/2 is uniform.
• sCond requirements satisfied!
• HεsCond

∞ (sCond(Z1,Uℓ/2)) ≥ ksCond.
• BUT Z2 might have 0.49ℓ bad bits!
• Save sCond using lemma that

adversary can’t be too bad.
• Hε′

∞(sCond(Z1,Z2) ≥ ksCond − 0.49ℓ
with ε′ = εsCond · 20.49ℓ.

Proof.

• To get error ε, need
εsCond = ε · 2−0.49ℓ.

• For sCond to exist, need
0.5ℓ ≥ log(ℓn/εsCond) + O(1)

• So require ε ≥ 2−0.01ℓ.
• sCond outputsm = 0.01ℓn+ O(1)

bits with entropym− O(ℓ).
• So for large const n, get entropy

rate m−O(ℓ)
m ≥ 0.99.

Condensing from oNOSFs
Corollary (Sharp threshold at g = ℓ/2)

Can’t condense (ℓ/2, ℓ)-oNOSFs beyond rate 1/2 - Impossibility.
Can condense (0.51ℓ, ℓ)-oNOSFs to rate 0.99 - Possibility. ✓

Part 3: Future Directions

Open questions

Open questions

• Explicit condensers for oNOSFs with constant block length?
• Our condensers (explicit and existential) have super-constant output

entropy gap . Is constant possible (for any values of ℓ and n)?
• Construct condensers for oNOBFs (online NOBFs).

Open questions

• Explicit condensers for oNOSFs with constant block length?

• Our condensers (explicit and existential) have super-constant output
entropy gap . Is constant possible (for any values of ℓ and n)?

• Construct condensers for oNOBFs (online NOBFs).

Open questions

• Explicit condensers for oNOSFs with constant block length?
• Our condensers (explicit and existential) have super-constant output

entropy gap . Is constant possible (for any values of ℓ and n)?

• Construct condensers for oNOBFs (online NOBFs).

Open questions

• Explicit condensers for oNOSFs with constant block length?
• Our condensers (explicit and existential) have super-constant output

entropy gap . Is constant possible (for any values of ℓ and n)?
• Construct condensers for oNOBFs (online NOBFs).

Open questions

• Explicit condensers for oNOSFs with constant block length?
• Our condensers (explicit and existential) have super-constant output

entropy gap . Is constant possible (for any values of ℓ and n)?
• Construct condensers for oNOBFs (online NOBFs).

	Part 0: Introduction
	Part 1: Models and Results
	Part 2: Possibility
	Part 3: Future Directions

